Search results

1 – 10 of over 1000
Article
Publication date: 4 June 2024

Songhao Wang, Zhenghua Qian and Yan Shang

The paper aims to the size-dependent analysis of functionally graded materials in thermal environment based on the modified couple stress theory using finite element method.

Abstract

Purpose

The paper aims to the size-dependent analysis of functionally graded materials in thermal environment based on the modified couple stress theory using finite element method.

Design/methodology/approach

The element formulation is developed within the framework of the penalty unsymmetric finite element method (FEM) in that the C1 continuity requirement is satisfied in weak sense and thus, C0 continuous interpolation enhanced by independent nodal rotation is employed as the test function. Meanwhile, the trial function is designed based on the stress functions and the weighted residual method. Besides, the special Gauss quadrature scheme is employed for integrals of matrices in accordance with the graded variation of the material properties.

Findings

The numerical results reveal that in thermal environment, functionally graded materials exhibit better bending performance compared to homogeneous materials, Moreover, the findings also indicate that with an increase in MLSP, the natural frequencies of out-of-plane modes gradually increase, while the natural frequencies of in-plane modes show much less variation, leading to a mode switch phenomenon.

Originality/value

The work provides an efficient numerical tool for analyzing and designing the functionally graded structures in thermal environment in practical engineering applications.

Details

Engineering Computations, vol. 41 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 August 2008

Y.Q. Zu, Y.Y. Yan, W.P. Shi and L.Q. Ren

The main objective of this work is to develop a boundary treatment in lattice Boltzmann method (LBM) for curved and moving boundaries and using this treatment to study numerically…

1554

Abstract

Purpose

The main objective of this work is to develop a boundary treatment in lattice Boltzmann method (LBM) for curved and moving boundaries and using this treatment to study numerically the flow around a rotating isothermal circular cylinder with/without heat transfer.

Design/methodology/approach

A multi‐distribution function thermal LBM model is used to simulate the flow and heat transfer around a rotating circular cylinder. To deal with the calculations on the surface of cylinder, a novel boundary treatment is developed.

Findings

The results of simulation for flow and heat transfer around a rotating cylinder including the evolution with time of velocity field, and the lift and drag coefficients are compared with those of previous theoretical, experimental and numerical studies. Excellent agreements show that present LBM including boundary treatment can achieve accurate results of flow and heat transfer. In addition, the effects of the peripheral‐to‐translating‐speed ratio, Reynolds number and Prandtl number on evolution of velocity and temperature fields around the cylinder are tested.

Practical implications

There is a large class of industrial processes which involve the motion of fluid passing rotating isothermal circular cylinders with/without heat transfer. Operations ranging from paper and textile making machines to glass and plastics processes are a few examples.

Originality/value

A strategy for LBM to treat curved and moving boundary with the second‐order accuracy for both velocity and temperature fields is presented. This kind of boundary treatment is very easy to implement and costs less in computational time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 September 2018

Mehdi Hosseini Abadshapoori and Mohammad Hassan Saidi

The purpose of this paper is to investigate the natural convection behavior of nanofluids in an enclosure. The enclosure is a 3D capsule with curved boundaries filled with TiO2

Abstract

Purpose

The purpose of this paper is to investigate the natural convection behavior of nanofluids in an enclosure. The enclosure is a 3D capsule with curved boundaries filled with TiO2-water nanofluid.

Design/methodology/approach

In this paper, a multiple relaxation times lattice Boltzmann method (MRT-LBM) has been used. Two-component LBM has been conducted to consider the interaction forces between nanoparticles and the base fluid.

Findings

Results show that the enhanced Nusselt number (Nu*) increases with the increase in volume fraction of nanoparticles (ϕ) and Ra number and decrease of nanoparticle size (λ). Additionally, the findings indicate that increasing volume fraction beyond a certain value decreases Nu*.

Originality/value

This paper presents a MRT model of lattice Boltzmann in a 3D curved enclosure. A correlation is also presented based on the current results for Nu* depending on Ra number, volume fraction and size of nanoparticles. Furthermore, a comparison for the convergence rate and accuracy of this model and the SIMPLE algorithm is presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 October 2018

Mohsen Izadi, Rasul Mohebbi, A. Chamkha and Ioan Pop

The purpose of this paper is to consider natural convection of a nanofluid inside of a C-shaped cavity using Lattice Boltzmann method (LBM).

Abstract

Purpose

The purpose of this paper is to consider natural convection of a nanofluid inside of a C-shaped cavity using Lattice Boltzmann method (LBM).

Design/methodology/approach

Effects of some geometry and flow parameters consisting of the aspect ratio of the cavity, aspect ratio of the heat source; Rayleigh number (Ra = 103 − 106) have been investigated. The validity of the method is checked by comparing the present results with ones from the previously published work.

Findings

The results demonstrate that for Ra = 103, the aspect ratio of the heat source has more influence on the average Nusselt number in contrast to the case of Ra = 106. Contrary to the fact that the average Nusselt number increases non-linearly more than twice because of the increase of the aspect ratio of the enclosure at Ra = 103, the average Nusselt number has a linear relation with the aspect ratio for of Ra = 106. Therefore, upon increasing the Rayleigh number, the efficiency of the aspect ratio of the cavity on the thermal convection, gradually diminishes.

Originality/value

The authors believe that all the results, both numerical and asymptotic, are original and have not been published elsewhere.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 May 2020

Yuan Ma, Mohammad Mehdi Rashidi, Rasul Mohebbi and Zhigang Yang

The nanofluid natural convection heat transfer in a hollow complex enclosure, which is named as Shamse knot shape, is studied numerically. This paper aims to present how the…

Abstract

Purpose

The nanofluid natural convection heat transfer in a hollow complex enclosure, which is named as Shamse knot shape, is studied numerically. This paper aims to present how the Rayleigh number, nanoparticle volume fraction, Hartmann number and hollow side length affect the fluid flow and heat transfer characteristics.

Design/methodology/approach

The continuity, momentum and energy equations have been solved using lattice Boltzmann method (LBM). Numerical simulation has been obtained for a wide range of Rayleigh number (103 ≤ Ra ≤ 106), nanoparticle volume fraction (0 ≤ ϕ 0.05) and Hartmann number (0 ≤ Ha ≤ 60) to analyze the fluid flow pattern and heat transfer characteristics. Moreover, the effect of hollow side length (D) on flow field and thermal performance is studied.

Findings

The results showed that the magnetic field has a negative effect on the thermal performance and the average Nusselt number decreases by increasing the Hartmann number. Because of the high conduction heat transfer coefficient of nanoparticles, the average Nusselt number increases by rising the nanoparticle volume fraction. The effect of adding nanoparticles on heat transfer is more effective at low nanoparticle volume fraction (0 ≤ ϕ ≤ 0.01). It was also found that at Ra = 106, when the hollow side length increases to 3, the flow pattern becomes different due to the small gap. The averaged Nu is an increasing function of D at low Ra and an opposite trend occurs at high Rayleigh number.

Originality/value

For the first time, the effects of magnetic field, Rayleigh number, nanoparticle volume fraction and hollow side length on natural convection heat transfer of hybrid nanofluid (Ag-TiO2/water) is investigated in a complicated cavity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 August 2019

Rasul Mohebbi, Mohsen Izadi, Nor Azwadi Che Sidik and Gholamhassan Najafi

This paper aims to study the natural convection of a nanofluid inside a cavity which contains obstacles using lattice Boltzmann method (LBM). The results have focused mainly on…

Abstract

Purpose

This paper aims to study the natural convection of a nanofluid inside a cavity which contains obstacles using lattice Boltzmann method (LBM). The results have focused mainly on various parameters such as number and aspect ratio of roughness elements and different nanoparticle volume fraction. The isotherms and streamlines are presented to describe the hydrodynamics and thermal behaviors of the nanofluid flow throughout the enclosure.

Design/methodology/approach

The methodology of this paper consists of mathematical model, statement of the problem, nanofluid thermophysical properties, lattice Boltzmann method, LBM for fluid flow, LBM for heat transfer, numerical strategy, boundary conditions, Nusselt (Nu) number calculation, code validation and grid independence.

Findings

Natural convection heat transfers of a nanofluid inside cavities with and without rough elements have been studied. Lattice Boltzmann technique has been used as numerical approach. The results showed that at higher Rayleigh number (Ra = 106), there are denser streamlines near the left (source) and right wall (sink) which results in better cooling and enhances convective heat rejection to the heat sink. After a distinctive aspect ratio of rough elements (A =0.1), change in streamline pattern which arises from increasing of aspect ratio does not have an important effect on isotherms. Results indicate that for lower Rayleigh number (Ra =103), no variation in average Nu is observed with increasing in number of roughness, while for higher one (Ra = 106) average Nu decreases from N = 0 (smooth cavity) up to N = 4 and then remains constant (N = 6).

Originality/value

Currently, no argumentative and comprehensive extraction can be concluded without fully understanding the role of different arrangement of roughness. Some geometrical parameters such as aspect ratio, number and position of rough elements have been considered. Also, the effect of nanoparticle concentration was studied at different Ra number. Briefly, using LBM, this paper aims to investigate the natural convection of a nanofluid flow on the thermal and hydrodynamics parameters in the presence of rough element with various arrangements.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 November 2018

M. Sheikholeslami, Hakan F. Öztop, Nidal Abu-Hamdeh and Zhixiong Li

The purpose of this paper is to research on CuO-water nanofluid Non-Darcy flow because of magnetic field. Porous cavity has circular heat source and filled with nanofluid. Lattice…

Abstract

Purpose

The purpose of this paper is to research on CuO-water nanofluid Non-Darcy flow because of magnetic field. Porous cavity has circular heat source and filled with nanofluid. Lattice Boltzmann Method (LBM) has been used to simulate this problem.

Design/methodology/approach

In this research, LBM has been applied as mesoscopic approach to simulate water-based nanofluid free convection. Koo–Kleinstreuer–Li model is used to consider Brownian motion impact on nanofluid properties. Impacts of Rayleigh number, Darcy number, nanofluid volume fraction and Hartmann number on heat transfer treatment are illustrated.

Findings

It is found that temperature gradient decreases with rise of while it enhances with augment of Ha. Darcy number can enhance the convective flow.

Originality/value

The originality of this work is to analyze the to investigate magnetic field impact on water based CuO-H2O nanofluid natural convection inside a porous cavity with elliptic heat source.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 November 2018

Yuan Ma, Rasul Mohebbi, Mohammad Mehdi Rashidi and Zhigang Yang

This paper aims to numerically investigate the natural convection heat transfer of multi-wall carbon nanotubes (MWCNTs)-water nanofluid in U-shaped enclosure equipped with a hot…

286

Abstract

Purpose

This paper aims to numerically investigate the natural convection heat transfer of multi-wall carbon nanotubes (MWCNTs)-water nanofluid in U-shaped enclosure equipped with a hot obstacle by using the lattice Boltzmann method.

Design/methodology/approach

The combination of the three topics (U-shaped enclosure, different positions of the hot obstacle and MWCNTs-water nanofluid) is innovative in the present study. In total, 15 different positions of the hot obstacle have been arranged, and the effects of pertinent parameters such as Rayleigh numbers, the solid volume fraction of the MWCNTs nanoparticles on the flow field, temperature distribution and the rate of heat transfer inside the enclosure are also investigated.

Findings

It is found that the average Nusselt number increased by raising the Rayleigh number, and so did the nanoparticle solid volume fraction regardless the position of the hot obstacle. Moreover, enclosures where the hot obstacle is located at the bottom region proved to provide a better rate of heat transfer at high Rayleigh number (106). It is concluded that at a low Ra number (103-105), the higher heat transfer rate and Nu number will be obtained when the hot obstacle is located in the left or right channel.

Originality/value

In the literature, no trace of studying the natural convection of nanofluids in U-shaped enclosures with heating obstacles was found. Also, MWCNTs were less used as nanoparticles. As the natural convection of nanofluids in thermal engineering applications would expand the existing knowledge, the current researchers conducted a numerical study of the natural convection of Maxwell nanofluid with MWCNTs in U-shaped enclosure equipped with a hot obstacle by using lattice Boltzmann method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 October 2023

Aoxiang Qiu, Weimin Sang, Feng Zhou and Dong Li

The paper aims to expand the scope of application of the lattice Boltzmann method (LBM), especially in the field of aircraft engineering. The traditional LBM is usually applied…

Abstract

Purpose

The paper aims to expand the scope of application of the lattice Boltzmann method (LBM), especially in the field of aircraft engineering. The traditional LBM is usually applied to incompressible flows at a low Reynolds number, which is not sufficient to satisfy the needs of aircraft engineering. Devoted to tackling the defect, the paper proposes a developed LBM combining the subgrid model and the multiple relaxation time (MRT) approach. A multilayer adaptive Cartesian grid method to improve the computing efficiency of the traditional LBM is also employed.

Design/methodology/approach

The subgrid model and the multilayer adaptive Cartesian grid are introduced into MRT-LBM for simulations of incompressible flows at a high Reynolds number. Validated by several typical flow simulations, the numerical methods in this paper can efficiently study the flows under high Reynolds numbers.

Findings

Some numerical simulations for the lid-driven flow of cavity, flow around iced GLC305, LB606b and ONERA-M6 are completed. The paper presents the investigation results, indicating that the methods are accurate and effective for the separated flow after icing.

Originality/value

LBM is developed with the addition of the subgrid model and the MRT method. A numerical strategy is proposed using a multilayer adaptive Cartesian grid method and its treatment of boundary conditions. The paper refers to innovative algorithm developments and applications to the aircraft engineering, especially for iced wing simulations with flow separations.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 February 2014

Ahad Zarghami, Stefano Ubertini and Sauro Succi

The main purpose of this paper is to develop a novel thermal lattice Boltzmann method (LBM) based on finite volume (FV) formulation. Validation of the suggested formulation is…

Abstract

Purpose

The main purpose of this paper is to develop a novel thermal lattice Boltzmann method (LBM) based on finite volume (FV) formulation. Validation of the suggested formulation is performed by simulating plane Poiseuille, backward-facing step and flow over circular cylinder.

Design/methodology/approach

For this purpose, a cell-centered scheme is used to discretize the convection operator and the double distribution function model is applied to describe the temperature field. To enhance stability, weighting factors are defined as flux correctors on a D2Q9 lattice.

Findings

The introduction of pressure-temperature-dependent flux-control coefficients in the streaming operator, in conjunction with suitable boundary conditions, is shown to result in enhanced numerical stability of the scheme. In all cases, excellent agreement with the existing literature is found and shows that the presented method is a promising scheme in simulating thermo-hydrodynamic phenomena.

Originality/value

A stable and accurate FV formulation of the thermal DDF-LBM is presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 1000