A.E. Johnson, J. Henderson and Y.D. Mathur
The purpose of the investigation was to examine the tertiary creep and the creep fracture characteristics of an aluminium alloy to specification B.S.2L42, subject to complex…
Abstract
The purpose of the investigation was to examine the tertiary creep and the creep fracture characteristics of an aluminium alloy to specification B.S.2L42, subject to complex stressing at 200 dog. C. The scope of the work involved seven pure torsion, pure tension, and combined tension and torsion creep tests, of durations between 300 hrs. and 3,000 hrs., on the aluminium alloy at 200 deg. C., and analysis of the results.
A.E. Johnson, J. Henderson and V.D. Mathur
As stated in general terms in a previous paragraph, in the ease of this material the following complex stress relaxation tests were made: two pure torsion tests from initial…
Abstract
As stated in general terms in a previous paragraph, in the ease of this material the following complex stress relaxation tests were made: two pure torsion tests from initial stresses of 4 tons/sq. in. and 3 tons/sq. in.; two tests having a stress ratio T/S=0·4 and having initial stress values of T=1·6, S=4 and T=1·2, S=3 tons/sq. in. in the two cases; two tests having a stress ratio T/S=0·8 and having initial stress values T=3·2, S=4 and T=2·62, S=3·28 tons/sq. in. respectively; and finally one test having a stress ratio T/S=1·5 and having an initial stress value T=4·5 and S=3 tons/sq. in. (i.e. a total of seven tests).
Presents a review on implementing finite element methods on supercomputers, workstations and PCs and gives main trends in hardware and software developments. An appendix included…
Abstract
Presents a review on implementing finite element methods on supercomputers, workstations and PCs and gives main trends in hardware and software developments. An appendix included at the end of the paper presents a bibliography on the subjects retrospectively to 1985 and approximately 1,100 references are listed.
Details
Keywords
This paper gives a review of the finite element techniques (FE)applied in the area of material processing. The latest trends in metalforming, non‐metal forming and powder…
Abstract
This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming and powder metallurgy are briefly discussed. The range of applications of finite elements on the subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for the last five years, and more than 1100 references are listed.
Details
Keywords
The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of the…
Abstract
Purpose
The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of the boundary walls, thermal conditions and/ or kinematics of objects embedded in the cavities and kinematics of external flow field through the ventilation ports. Experimental works on mixed convection have also been addressed.
Design/methodology/approach
This review is based on 10 unified models on mixed convection within cavities. Models 1–5 involve mixed convection based on the movement of single or double walls subjected to various temperature boundary conditions. Model 6 elucidates mixed convection due to the movement of single or double walls of cavities containing discrete heaters at the stationary wall(s). Model 7A focuses mixed convection based on the movement of wall(s) for cavities containing stationary solid obstacles (hot or cold or adiabatic) whereas Model 7B elucidates mixed convection based on the rotation of solid cylinders (hot or conductive or adiabatic) within the cavities enclosed by stationary or moving wall(s). Model 8 is based on mixed convection due to the flow of air through ventilation ports of cavities (with or without adiabatic baffles) subjected to hot and adiabatic walls. Models 9 and 10 elucidate mixed convection due to flow of air through ventilation ports of cavities involving discrete heaters and/or solid obstacles (conductive or hot) at various locations within cavities.
Findings
Mixed convection plays an important role for various processes based on convection pattern and heat transfer rate. An important dimensionless number, Richardson number (Ri) identifies various convection regimes (forced, mixed and natural convection). Generalized models also depict the role of “aiding” and “opposing” flow and combination of both on mixed convection processes. Aiding flow (interaction of buoyancy and inertial forces in the same direction) may result in the augmentation of the heat transfer rate whereas opposing flow (interaction of buoyancy and inertial forces in the opposite directions) may result in decrease of the heat transfer rate. Works involving fluid media, porous media and nanofluids (with magnetohydrodynamics) have been highlighted. Various numerical and experimental works on mixed convection have been elucidated. Flow and thermal maps associated with the heat transfer rate for a few representative cases of unified models [Models 1–10] have been elucidated involving specific dimensionless numbers.
Originality/value
This review paper will provide guidelines for optimal design/operation involving mixed convection processing applications.
Details
Keywords
Benny Barak, Anil Mathur, Yong Zhang, Keun Lee and Emmanuel Erondu
Field survey studies undertaken in Nigeria, Korea, China and India explored the way inner‐age satisfaction is experienced in those culturally diverse societies. Chronologically 20…
Abstract
Field survey studies undertaken in Nigeria, Korea, China and India explored the way inner‐age satisfaction is experienced in those culturally diverse societies. Chronologically 20 to 59 year old respondents’ inner‐age satisfaction was gauged as the average difference between feel, look, do, and interest cognitive (self‐perceived) and desired (ideal) inner‐age dimensions. Analyses of covariance (with chronological age factored out) across the four nations showed Nigeria to differ significantly in terms of inner‐age satisfaction from each Asian population, contrary to the Asian societies where no differences were found across samples (except between Korea and India where inner‐age satisfaction differed at a p .05). High levels of satisfaction with inner‐age (coming about when cognitive and desired ages are equal) commonly transpired: 31.4 per cent of Indian, 36.9 per cent of Nigerian, 44.3 per cent of Chinese, and 44.9 per cent of Korean respondents. Age dissatisfaction in an elder direction (ideal age older than self‐perceived age) was atypical and happened most often among Nigerian (23.4 per cent) and least among Korean subjects (10.7 per cent). In contrast, wishing for a younger innerage was a commonplace phenomenon in India (50.6 per cent of the sample), as well as in China where it occurred the least (36.6 per cent). The study’s findings imply the universal nature of the way human beings (irrespective of culture) perceive and feel about inner‐age, as well as the potential of an inner‐age satisfaction psychographic as a relevant consumer behavior segmentation trait for marketing planners of age‐sensitive products and services who seek to standardize their global branding and distribution.
Details
Keywords
Martin Götz and Ernest H. O’Boyle
The overall goal of science is to build a valid and reliable body of knowledge about the functioning of the world and how applying that knowledge can change it. As personnel and…
Abstract
The overall goal of science is to build a valid and reliable body of knowledge about the functioning of the world and how applying that knowledge can change it. As personnel and human resources management researchers, we aim to contribute to the respective bodies of knowledge to provide both employers and employees with a workable foundation to help with those problems they are confronted with. However, what research on research has consistently demonstrated is that the scientific endeavor possesses existential issues including a substantial lack of (a) solid theory, (b) replicability, (c) reproducibility, (d) proper and generalizable samples, (e) sufficient quality control (i.e., peer review), (f) robust and trustworthy statistical results, (g) availability of research, and (h) sufficient practical implications. In this chapter, we first sing a song of sorrow regarding the current state of the social sciences in general and personnel and human resources management specifically. Then, we investigate potential grievances that might have led to it (i.e., questionable research practices, misplaced incentives), only to end with a verse of hope by outlining an avenue for betterment (i.e., open science and policy changes at multiple levels).
Details
Keywords
Ajay Vadakkepatt, Sanjay R. Mathur and Jayathi Y. Murthy
Topology optimization is a method used for developing optimized geometric designs by distributing material pixels in a given design space that maximizes a chosen quantity of…
Abstract
Purpose
Topology optimization is a method used for developing optimized geometric designs by distributing material pixels in a given design space that maximizes a chosen quantity of interest (QoI) subject to constraints. The purpose of this study is to develop a problem-agnostic automatic differentiation (AD) framework to compute sensitivities of the QoI required for density distribution-based topology optimization in an unstructured co-located cell-centered finite volume framework. Using this AD framework, the authors develop and demonstrate the topology optimization procedure for multi-dimensional steady-state heat conduction problems.
Design/methodology/approach
Topology optimization is performed using the well-established solid isotropic material with penalization approach. The method of moving asymptotes, a gradient-based optimization algorithm, is used to perform the optimization. The sensitivities of the QoI with respect to design variables, required for optimization algorithm, are computed using a discrete adjoint method with a novel AD library named residual automatic partial differentiator (Rapid).
Findings
Topologies that maximize or minimize relevant quantities of interest in heat conduction applications are presented. The efficacy of the technique is demonstrated using a variety of realistic heat transfer applications in both two and three dimensions, in conjugate heat transfer problems with finite conductivity ratios and in non-rectangular/non-cuboidal domains.
Originality/value
In contrast to most published work which has either used finite element methods or Cartesian finite volume methods for transport applications, the topology optimization procedure is developed in a general unstructured finite volume framework. This permits topology optimization for flow and heat transfer applications in complex design domains such as those encountered in industry. In addition, the Rapid library is designed to provide a problem-agnostic pathway to automatically compute all required derivatives to machine accuracy. This obviates the necessity to write new code for finding sensitivities when new physics are added or new cost functions are considered and permits general-purpose implementations of topology optimization for complex industrial applications.
Details
Keywords
Present investigation based on the flow of electrically conducting Williamson nanofluid embedded in a porous medium past a linearly horizontal stretching sheet. In addition to…
Abstract
Purpose
Present investigation based on the flow of electrically conducting Williamson nanofluid embedded in a porous medium past a linearly horizontal stretching sheet. In addition to that, the combined effect of thermophoresis, Brownian motion, thermal radiation and chemical reaction is considered in both energy and solutal transfer equation, respectively.
Design/methodology/approach
With suitable choice of nondimensional variables the governing equations for the velocity, temperature, species concentration fields, as well as rate shear stress at the plate, rate of heat and mass transfer are expressed in the nondimensional form. These transformed coupled nonlinear differential equations are solved semi-analytically using variation parameter method.
Findings
The behavior of characterizing parameters such as magnetic parameter, melting parameter, porous matrix, Brownian motion, thermophoretic parameter, radiation, Lewis number and chemical particular case present result validates with earlier established results and found to be in good agreement. Finally reaction parameter is demonstrated via graphs and numerical results are presented in tabular form.
Originality/value
The said work is an original work of the authors.