Abstract
Purpose
The purpose of this paper is to develop comprehensive risk management tool, Intelligent Risk Mapping and Assessment System (IRMAS™) with a contingency for multi‐site, multi‐partner concurrent engineering projects with the aim of achieving above‐mentioned paradigms. Its unique knowledge warehouse enables the use of organisational knowledge, lessons learnt, captured as well as best practices to minimise risks in project management.
Design/methodology/approach
IRMAS is designed to identify, prioritise, analyse and assist project managers to manage perceived sources of concurrent engineering risks. Several knowledge elicitation techniques were used to compile the knowledge used for the intelligent system developed. The core of the research is the reasoning methodology that not only supports the decision‐making process of the user, but also aids the knowledge retrieving, storing, sharing and updating process of manufacturing organisations.
Findings
A total of 589 risk items were identified for different project types, as well as information on 4,372 risk items and 136 lessons learnt were gathered. IRMAS is a proactive tool supporting project management activities. It is designed as a web‐based portal compiled in Java facilitating effective and a common communication platform between project partners.
Research limitations/implications
Identification of risks during the complete product design, development and delivery process in a concurrent engineering environment is challenging. It covers the “product value stream” including partners, suppliers, research and development, design and manufacturing, marketing, purchasing, service and support personnel and customers. Within the context of concurrent engineering, the design style must be “Design WITH” approach where collaborative negotiation requires communication, consideration and collaboration. The full validation of IRMAS™ is successfully carried out in two large‐scale new product development projects. It has already been decided to be deployed by a large international aerospace company and is successfully commercialized.
Originality/value
The originality of the paper lies in its uniqueness in these areas: IRMAS provides a systematic engineering approach to risk management of concurrent product and process development based on risk management standards and Project Management Body of Knowledge, to leverage of success factors in manufacturing; concurrencies and relationships between several activities throughout product's life cycle are captured and mapped; the inheritance of risk between several phases are modelled and quantified; the wealth of knowledge stored in the knowledge repository and IRMAS's capability to reuse them for later elicitation in the system's knowledge base; and user‐interactive, unique dynamic risk management software package which will be available in the commercial market.
Details
Keywords
Ghislain Tchuen, Pascalin Tiam Kapen and Yves Burtschell
– The purpose of this paper is to present a new hybrid Euler flux fonction for use in a finite-volume Euler/Navier-Stokes code and adapted to compressible flow problems.
Abstract
Purpose
The purpose of this paper is to present a new hybrid Euler flux fonction for use in a finite-volume Euler/Navier-Stokes code and adapted to compressible flow problems.
Design/methodology/approach
The proposed scheme, called AUFSRR can be devised by combining the AUFS solver and the Roe solver, based on a rotated Riemann solver approach (Sun and Takayama, 2003; Ren, 2003). The upwind direction is determined by the velocity-difference vector and idea is to apply the AUFS solver in the direction normal to shocks to suppress carbuncle and the Roe solver across shear layers to avoid an excessive amount of dissipation. The resulting flux functions can be implemented in a very simple manner, in the form of the Roe solver with modified wave speeds, so that converting an existing AUFS flux code into the new fluxes is an extremely simple task.
Findings
The proposed flux functions require about 18 per cent more CPU time than the Roe flux. Accuracy, efficiency and other essential features of AUFSRR scheme are evaluated by analyzing shock propagation behaviours for both the steady and unsteady compressible flows. This is demonstrated by several test cases (1D and 2D) with standard finite-volume Euler code, by comparing results with existing methods.
Practical implications
The hybrid Euler flux function is used in a finite-volume Euler/Navier-Stokes code and adapted to compressible flow problems.
Originality/value
The AUFSRR scheme is devised by combining the AUFS solver and the Roe solver, based on a rotated Riemann solver approach.
Details
Keywords
Simone Massulini Acosta and Angelo Marcio Oliveira Sant'Anna
Process monitoring is a way to manage the quality characteristics of products in manufacturing processes. Several process monitoring based on machine learning algorithms have been…
Abstract
Purpose
Process monitoring is a way to manage the quality characteristics of products in manufacturing processes. Several process monitoring based on machine learning algorithms have been proposed in the literature and have gained the attention of many researchers. In this paper, the authors developed machine learning-based control charts for monitoring fraction non-conforming products in smart manufacturing. This study proposed a relevance vector machine using Bayesian sparse kernel optimized by differential evolution algorithm for efficient monitoring in manufacturing.
Design/methodology/approach
A new approach was carried out about data analysis, modelling and monitoring in the manufacturing industry. This study developed a relevance vector machine using Bayesian sparse kernel technique to improve the support vector machine used to both regression and classification problems. The authors compared the performance of proposed relevance vector machine with other machine learning algorithms, such as support vector machine, artificial neural network and beta regression model. The proposed approach was evaluated by different shift scenarios of average run length using Monte Carlo simulation.
Findings
The authors analyse a real case study in a manufacturing company, based on best machine learning algorithms. The results indicate that proposed relevance vector machine-based process monitoring are excellent quality tools for monitoring defective products in manufacturing process. A comparative analysis with four machine learning models is used to evaluate the performance of the proposed approach. The relevance vector machine has slightly better performance than support vector machine, artificial neural network and beta models.
Originality/value
This research is different from the others by providing approaches for monitoring defective products. Machine learning-based control charts are used to monitor product failures in smart manufacturing process. Besides, the key contribution of this study is to develop different models for fault detection and to identify any change point in the manufacturing process. Moreover, the authors’ research indicates that machine learning models are adequate tools for the modelling and monitoring of the fraction non-conforming product in the industrial process.
Details
Keywords
Pinjun Xia, António Lopes and Maria Restivo
Haptics can significantly enhance the user's sense of immersion and interactivity. Especially in an assembly task, haptic feedback can help designers to have a better…
Abstract
Purpose
Haptics can significantly enhance the user's sense of immersion and interactivity. Especially in an assembly task, haptic feedback can help designers to have a better understanding of virtual objects and to increase task efficiency. The purpose of this paper is to investigate the design and implementation of a haptic‐based virtual assembly system (HVAS).
Design/methodology/approach
A multi‐thread system structure was designed, an automatic data integration interface was developed to transfer geometry, topology, assembly and physics information from a computer‐aided design system to virtual reality application, and a hierarchical constraint‐based data model and scene graph structure was designed to construct the virtual assembly environment. Unlike traditional virtual assembly systems based on collision detection or geometry constraint only, a physics‐based modeling approach combining with haptic feedback and geometry constraint was undertaken to realize and guide the realistic assembly process. When two parts collide into each other, the force and torque can be computed and provide feedback, and a spring‐mass model is used to prevent penetration and simulate dynamic behaviour. When two parts are close enough to each other and the assembly simulation state is activated, a geometry constraint can be captured, an attractive force can be generated to guide the user to assemble the part along the correct position, and the repulsive force can also be generated to realize the mating process as natural and realistic as in real life.
Findings
The implementation details and application examples demonstrate that haptic‐based virtual assembly is a valuable tool for assembly design and process planning.
Originality/value
The paper presents an HVAS.
Details
Keywords
Santosh B. Rane, Prathamesh Ramkrishana Potdar and Suraj Rane
The purpose of this study is to investigate the best fleet for a new purchase based on multi-objective optimization on the basis of ratio (MOORA), reference point and multi-MOORA…
Abstract
Purpose
The purpose of this study is to investigate the best fleet for a new purchase based on multi-objective optimization on the basis of ratio (MOORA), reference point and multi-MOORA methods. This study further identifies critical parameters for fleet performance monitoring and exploring optimum range of critical parameters using Monte Carlo simulation. At the end of this study, fleet maintenance management and operations have been discussed in the perspectives of risk management.
Design/methodology/approach
Fleet categories and fleet performance monitoring parameters have been identified using the literature survey and Delphi method. Further, real-time data has been analyzed using MOORA, reference point and multi-MOORA methods. Taguchi and full factorial design of experiment (DOE) are used to investigate critical parameters for fleet performance monitoring.
Findings
Fleet performance monitoring is done based on fuel consumption (FC), CO2 emission (CE), coolant temperature (CT), fleet rating, revenue generation (RG), fleet utilization, total weight and ambient temperature. MOORA, reference point and multi-MOORA methods suggested the common best alternative for a particular category of the fleet (compact, hatchback and sedan). FC and RG are the critical parameters for monitoring the fleet performance.
Research limitations/implications
The geographical aspects have not been considered for this study.
Practical implications
A pilot run of 300 fleets shows saving of Rs. 2,611,013/- (US$36,264.065), which comprises total maintenance cost [Rs. 1,749,033/- (US$24,292.125)] and FC cost [Rs. 861,980/- (US$11,971.94)] annually.
Social implications
Reduction in CE (4.83%) creates a positive impact on human health. The reduction in the breakdown maintenance of fleet improves the reliability of fleet services.
Originality/value
This study investigates the most useful parameters for fleet management are FC, CE, CT. Taguchi DOE and full factorial DOE have identified FC and RG as a most critical parameters for fleet health/performance monitoring.
Details
Keywords
Abdifatah Ahmed Haji and Sanni Mubaraq
The purpose of this paper is to examine the impact of corporate governance and ownership structure attributes on firm performance following the revised code on corporate…
Abstract
Purpose
The purpose of this paper is to examine the impact of corporate governance and ownership structure attributes on firm performance following the revised code on corporate governance in Malaysia. The study presents a longitudinal assessment of the compliance and implications of the revised code on firm performance.
Design/methodology/approach
Two data sets consisting of before (2006) and after (2008-2010) the revised code are examined. Drawing from the largest companies listed on Bursa Malaysia (BM), the first data set contains 92 observations in the year 2006 while the second data set comprises of 282 observations drawn from the largest companies listed on BM over a three-year period, from 2008-2010. Both accounting (return on assets and return on equity) and market performance (Tobin’s Q) measures were used to measure firm performance. Multiple and panel data regression analyses were adopted to analyze the data.
Findings
The study shows that there were still cases of non-compliance to the basic requirements of the code such as the one-third independent non-executive director (INDs) requirement even after the revised code. While the regression models indicate marginal significance of board size and independent directors before the revised code, the results indicate all corporate governance variables have a significant negative relationship with at least one of the measures of corporate performance. Independent chairperson, however, showed a consistent positive impact on firm performance both before and after the revised code. In addition, ownership structure elements were found to have a negative relationship with either accounting or market performance measures, with institutional ownership showing a consistent negative impact on firm performance. Firm size and leverage, as control variables, were significant in determining corporate performance.
Research limitations/implications
One limitation is the use of separate measures of corporate governance attributes, as opposed to a corporate governance index (CGI). As a result, the study constructs a CGI based on the recommendations of the revised code and proposes for future research use.
Practical implications
Some of the largest companies did not even comply with basic requirements such as the “one-third INDs” mandatory requirement. Hence, the regulators may want to reinforce the requirements of the code and also detail examples of good governance practices. The results, which show a consistent positive relationship between the presence of an independent chairperson and firm performance in both data sets, suggest listed companies to consider appointing an independent chairperson in the corporate leadership. The regulatory authorities may also wish to note this phenomenon when drafting any future corporate governance codes.
Originality/value
This study offers new insights of the implications of regulatory changes on the relationship between corporate governance attributes and firm performance from the perspective of a developing country. The development of a CGI for future research is a novel approach of this study.
Details
Keywords
Germanico Gonzalez-Badillo, Hugo I. Medellin-Castillo, Theodore Lim, James M. Ritchie, Raymond C.W. Sung and Samir Garbaya
In this study, a new methodology to evaluate the performance of physics simulation engines (PSEs) when used in haptic virtual assembly applications is proposed. This methodology…
Abstract
Purpose
In this study, a new methodology to evaluate the performance of physics simulation engines (PSEs) when used in haptic virtual assembly applications is proposed. This methodology can be used to assess the performance of any physics engine. To prove the feasibility of the proposed methodology, two-third party PSEs – Bullet and PhysXtm – were evaluated. The paper aims to discuss these issues.
Design/methodology/approach
Eight assembly tests comprising variable geometric and dynamic complexity were conducted. The strengths and weaknesses of each simulation engine for haptic virtual assembly were identified by measuring different parameters such as task completion time, influence of weight perception and force feedback.
Findings
The proposed tests have led to the development of a standard methodology by which physics engines can be compared and evaluated. The results have shown that when the assembly comprises complex shapes, Bullet has better performance than PhysX. It was also observed that the assembly time is directly affected by the weight of virtual objects.
Research limitations/implications
A more comprehensive study must be carried out in order to evaluate and compare the performance of more PSEs. The influence of collision shape representation algorithms on the performance of haptic assembly must be considered in future analysis.
Originality/value
The performance of PSEs in haptic-enabled VR applications had been remained as an unknown issue. The main parameters of physics engines that affect the haptic virtual assembly process have been identified. All the tests performed in this study were carried out with the haptic rendering loop active and the objects manipulated through the haptic device.
Details
Keywords
Jiandong Lu, Xiaolei Wang, Liguo Fei, Guo Chen and Yuqiang Feng
During the coronavirus disease 2019 (COVID-19) pandemic, ubiquitous social media has become a primary channel for information dissemination, social interactions and recreational…
Abstract
Purpose
During the coronavirus disease 2019 (COVID-19) pandemic, ubiquitous social media has become a primary channel for information dissemination, social interactions and recreational activities. However, it remains unclear how social media usage influences nonpharmaceutical preventive behavior of individuals in response to the pandemic. This paper aims to explore the impacts of social media on COVID-19 preventive behaviors based on the theoretical lens of empowerment.
Design/methodology/approach
In this paper, survey data has been collected from 739 social media users in China to conduct structural equation modeling (SEM) analysis.
Findings
The results indicate that social media empowers individuals in terms of knowledge seeking, knowledge sharing, socializing and entertainment to promote preventive behaviors at the individual level by increasing each person's perception of collective efficacy and social cohesion. Meanwhile, social cohesion negatively impacts the relationship between collective efficacy and individual preventive behavior.
Originality/value
This study provides insights regarding the role of social media in crisis response and examines the role of collective beliefs in the influencing mechanism of social media. The results presented herein can be used to guide government agencies seeking to control the COVID-19 pandemic.
Details
Keywords
PingJun Xia, António M. Lopes and Maria Teresa Restivo
Virtual reality (VR) for product assembly has been studied for more than 20 years but its practical application in industry is still very much in its infancy. Haptics is a new and…
Abstract
Purpose
Virtual reality (VR) for product assembly has been studied for more than 20 years but its practical application in industry is still very much in its infancy. Haptics is a new and important interaction method for VR and a strong and growing research area, however, it still remains a virtually unknown concept for industrial application.
Design/methodology/approach
This paper provides a comprehensive survey of VR and haptics for product assembly, from rigid parts to soft cables.
Findings
Some new ideas and research progresses in recent years are especially investigated. First the concepts and classifications of virtual assembly are introduced and the different virtual environment systems for product assembly are discussed. Then the major research groups, typical systems and major research issues are explored in detail, treating rigid parts and soft cables separately. Lastly, the barriers preventing successful application of virtual assembly are discussed and future research directions are also summarized.
Originality/value
The paper provides an overview and analysis of VR and haptics for product assembly, including both rigid parts and soft cables.
Details
Keywords
Germanico Gonzalez-Badillo, Hugo Medellin-Castillo, Theodore Lim, James Ritchie and Samir Garbaya
This paper aims to report the development and key features of a novel virtual reality system for assembly planning and evaluation called Haptic Assembly and Manufacturing System…
Abstract
Purpose
This paper aims to report the development and key features of a novel virtual reality system for assembly planning and evaluation called Haptic Assembly and Manufacturing System (HAMS). The system is intended to be used as a tool for training, design analysis and path planning.
Design/methodology/approach
The proposed system uses the physics-based modelling (PBM) to perform assemblies in virtual environments. Moreover, dynamic assembly constrains have been considered to reduce the degrees of freedom of virtual objects and enhance the virtual assembly performance.
Findings
To evaluate the effectiveness and performance of HAMS, the assembly of various mechanical components has been carried out, and the results have shown that it can be effectively used to simulate, evaluate, plan and automatically formalise the assembly of complex models in a more natural and intuitive way.
Research limitations/implications
The collision detection performance is the bottleneck in any virtual assembly system. New methods of collision shape representation and collision detection algorithms must be considered.
Originality/value
HAMS introduces the use of dynamic assembly constraints to enhance the virtual assembly performance. HAMS also uses features not yet reported by similar systems in the literature. These features include: automatic or manual definition of assembly constraints within the virtual assembly system; the implementation of control panels and widgets to modify simulation parameters during running time to evaluate its influence on simulation performance; assembly data logging such as trajectories, forces and update rates for post-processing, further analysis or its presentation in the form of chronocyclegraphs to graphically analyse the assembly process.