Search results
1 – 3 of 3Bahubali Babanrao Sangame and Y. Prasannatha Reddy
Producing superior-quality ductile cast iron demands the use of various intricate inoculants. In addition to iron and silicon, these materials also include alloying elements like…
Abstract
Purpose
Producing superior-quality ductile cast iron demands the use of various intricate inoculants. In addition to iron and silicon, these materials also include alloying elements like calcium, barium, cerium, bismuth and zirconium. These elements are effective in minimizing carbide solidification and enhancing the formation of eutectic cells, thereby resulting in improved cast iron quality.
Design/methodology/approach
This article discusses the findings of an investigation on how various inoculants impact critical thermal analysis parameters such as undercooling, recalescence and their correlation with the nucleation of graphite nodules and shrinkage tendency.
Findings
For the study, five distinct inoculants with varying active components in their chemical composition were utilized. The particular formulation of the inoculant has a notable impact on the extent of undercooling during the solidifying process of ductile cast iron. Investigation indicates that incorporating inoculant reduces the temperature at which austenite dendrites form and raises the eutectic freezing temperature. Upon analyzing the microstructure, it is found that the inclusion of inoculation led to a rise in the nodule count from 103 to 272 nodules.
Originality/value
An increased graphite factor, which denotes the growth of graphite nodules during the subsequent stage of the eutectic reaction, supports the benefits of inoculation. Ce and Bi-inoculation have increased the growth of graphite nodules in the cast area during solidification compared to other inoculant formulations. This enhanced production helps in decreasing the size of macroporosity.
Details
Keywords
Bahubali Babanrao Sangame and Y. Prasannatha Reddy
The foundry industry incurs additional costs as a result of defective castings. Shrinkage defects are a frequent problem in ductile iron castings. It is still essential to…
Abstract
Purpose
The foundry industry incurs additional costs as a result of defective castings. Shrinkage defects are a frequent problem in ductile iron castings. It is still essential to understand how shrinkage porosity varies in size when the ductile iron composition changes. This information can be used to produce high-quality cast parts and determine the best processing conditions. The objective of this research paper is to examine the effect of carbon equivalent and inoculation on the morphology of the shrinkage defect using thermal analysis.
Design/methodology/approach
This study focuses on certain thermal analysis parameters, such as the angle of the first derivative curve at the solidus temperature, recalescence and its relationships to graphite nucleation and shrinkage tendency. The results of thermal analysis in terms of the cooling curve and its derivative parameters, and thorough characterizations of the shrinkage observed in cup castings produced with various melt compositions and inoculation are presented in the current study.
Findings
The proportion of caved surfaces and macro shrinkage porosity defects has been reduced as the carbon equivalent of melt increases from hypoeutectic to a hypereutectic composition. The composition that is slightly hypereutectic has the lowest shrinkage propensity. Although inoculation reduces shrinkage, the importance of this parameter differs depending on the carbon equivalent.
Originality/value
The percentage of macro shrinkage porosity and the angle that the cooling rate curve forms are strongly correlated. It is found that the macro shrinkage size decreases as the angle of the first derivative curve at the solidus temperature is reduced. Further, lower macroporosity is produced by a metal that has a higher nodule count in association with a greater cooling rate toward the end of the solidification process.
Details
Keywords
Bahubali Babanrao Sangame, Y. Prasannatha Reddy and Vasudev D. Shinde
The final properties of ductile iron are decided by the inoculant processing while pouring the melt. The shape and size of nodules generated during solidification are of paramount…
Abstract
Purpose
The final properties of ductile iron are decided by the inoculant processing while pouring the melt. The shape and size of nodules generated during solidification are of paramount importance in solidification of ductile cast iron. The purpose of this study is to examine the effect of different inoculant addition on the solidification of ductile cast iron melt through thermal analysis.
Design/methodology/approach
Thermal analysis has recently grown as a tool for modeling the solidification behavior of ductile cast irons. Iron properties will be predicted by analyzing the cooling curve patterns of the melts and predicting the related effectiveness of inoculant processing. In this study, thermal analysis is used to evaluate the need for inoculation.
Findings
The amount and type of inoculation will affect the amount of undercooling during the solidification of ductile cast iron. It is found that the addition of 0.1 to 0.4 Wt.% inoculant lowers the austenite dendrite formation starting temperature while increasing the eutectic freezing temperature. Microstructure analysis revealed that the addition of inoculation increases the nodule count from 103 to 242 nodules. The beneficial effects of inoculation are sustained by an improved graphitization factor, which shows the formation of graphite nodules in the second phase of the eutectic reaction.
Originality/value
The inoculation treatment has improved metallurgical occurrences such as carbide to graphite conversion, graphite microstructure control, graphite nodule count at the start of solidification and the last stage of solidification, which determines the soundness of casting. The foundry industry can follow these steps for monitoring the solidification of ductile iron castings.
Details