E. Schall, Y. Burtschell and D. Zeitoun
Non‐equilibrium hypersonic viscous flows with high enthalpyconditions have been computed with an implicit time‐dependentfinite‐difference scheme. This scheme accounts for both…
Abstract
Non‐equilibrium hypersonic viscous flows with high enthalpy conditions have been computed with an implicit time‐dependent finite‐difference scheme. This scheme accounts for both chemical and vibrational non‐equilibrium processes in air flow around a hemispherical cylindrical body. The air was assumed to decompose into the following five species N, O, NO, N2 and O2 and only the two diatomic species N2 and O2 are taken in thermal non‐equilibrium. A range of Mach number from 14 to 18 has been investigated. The numerical results have been compared with those obtained by other workers and are in agreement with ballistic range data concerning the standoff shock distance at M = 15.3. The computed heat flux wall follows the trends of the experiments with an under prediction increasing with the Mach number. The influence of the thermal non‐equilibrium assumption on the computed standoff shock distance is investigated.
Details
Keywords
Ghislain Tchuen, Yves Burtschell and David E. Zeitoun
To compute the Navier‐Stokes equations of a non‐equilibrium weakly ionized air flow. This can help to have a better description of the flow‐field and the wall heat transfer in…
Abstract
Purpose
To compute the Navier‐Stokes equations of a non‐equilibrium weakly ionized air flow. This can help to have a better description of the flow‐field and the wall heat transfer in hypersonic conditions.
Design/methodology/approach
The numerical approach is based on a multi block finite volume method and using a Riemann's solver based on a MUSCL‐TVD algorithm. In the flux splitting procedure the modified speed of sound, due to the electronic mode, is implemented.
Findings
A good description of the shock standoff distance, of the wall heat fluxes and of the peak of electron density number in the shock layer.
Research limitations/implications
The radiative effects are not included in this paper. For the very high Mach numbers, this can modify the shock layer parameters.
Practical implications
The knowledge of the wall heat transfer in the re‐entry body problems.
Originality/value
The building of a robust numerical code in order to well describe hypersonic air flow in high Mach numbers.
Details
Keywords
Ghislain Tchuen, Pascalin Tiam Kapen and Yves Burtschell
– The purpose of this paper is to present a new hybrid Euler flux fonction for use in a finite-volume Euler/Navier-Stokes code and adapted to compressible flow problems.
Abstract
Purpose
The purpose of this paper is to present a new hybrid Euler flux fonction for use in a finite-volume Euler/Navier-Stokes code and adapted to compressible flow problems.
Design/methodology/approach
The proposed scheme, called AUFSRR can be devised by combining the AUFS solver and the Roe solver, based on a rotated Riemann solver approach (Sun and Takayama, 2003; Ren, 2003). The upwind direction is determined by the velocity-difference vector and idea is to apply the AUFS solver in the direction normal to shocks to suppress carbuncle and the Roe solver across shear layers to avoid an excessive amount of dissipation. The resulting flux functions can be implemented in a very simple manner, in the form of the Roe solver with modified wave speeds, so that converting an existing AUFS flux code into the new fluxes is an extremely simple task.
Findings
The proposed flux functions require about 18 per cent more CPU time than the Roe flux. Accuracy, efficiency and other essential features of AUFSRR scheme are evaluated by analyzing shock propagation behaviours for both the steady and unsteady compressible flows. This is demonstrated by several test cases (1D and 2D) with standard finite-volume Euler code, by comparing results with existing methods.
Practical implications
The hybrid Euler flux function is used in a finite-volume Euler/Navier-Stokes code and adapted to compressible flow problems.
Originality/value
The AUFSRR scheme is devised by combining the AUFS solver and the Roe solver, based on a rotated Riemann solver approach.
Details
Keywords
Mouna Lamnaouer, Alain Kassab, Eduardo Divo, Nolan Polley, Rodrigo Garza-Urquiza and Eric Petersen
An axisymmetric shock-tube model of the high-pressure shock-tube facility at the Texas A&M University has been developed. The shock tube is non-conventional with a non-uniform…
Abstract
Purpose
An axisymmetric shock-tube model of the high-pressure shock-tube facility at the Texas A&M University has been developed. The shock tube is non-conventional with a non-uniform cross-section and features a driver section with a smaller diameter than the driven section. The paper aims to discuss these issues.
Design/methodology/approach
Computations were carried out based on the finite volume approach and the AUSM+ flux-differencing scheme. The adaptive mesh refinement algorithm was applied to the time-dependent flow fields to accurately capture and resolve the shock and contact discontinuities as well as the very fine scales associated with the viscous effects. The incorporation of a conjugate heat transfer model enhanced the credibility of the results.
Findings
The shock-tube model is validated with simulation of the bifurcation phenomenon and with experimental data. The model is shown to be capable of accurately simulating the shock and expansion wave propagations and reflections as well as the flow non-uniformities behind the reflected shock wave as a result of reflected shock/boundary layer interaction or bifurcation. The pressure profiles behind the reflected shock wave agree with the experimental results.
Originality/value
This paper presents one of the first studies to model the entire flow field history of a non-uniform diameter shock tube with a conjugate heat transfer model beginning from the bursting of the diaphragm while simultaneously resolving the fine features of the reflected shock-boundary layer interaction and the post-shock region near the end-wall, at conditions useful for chemical kinetics experiments. An important discovery from this study is the possible existence of hot spots in the end-wall region that could lead to early non-homogeneous ignition events. More experimental and numerical work is needed to quantify the hot spots.
Details
Keywords
Paragmoni Kalita, Anoop K. Dass and Jongki Hazarika
The flux vector splitting (FVS) schemes are known for their higher resistance to shock instabilities and carbuncle phenomena in high-speed flow computations, which are generally…
Abstract
Purpose
The flux vector splitting (FVS) schemes are known for their higher resistance to shock instabilities and carbuncle phenomena in high-speed flow computations, which are generally accompanied by relatively large numerical diffusion. However, it is desirable to control the numerical diffusion of FVS schemes inside the boundary layer for improved accuracy in viscous flow computations. This study aims to develop a new methodology for controlling the numerical diffusion of FVS schemes for viscous flow computations with the help of a recently developed boundary layer sensor.
Design/methodology/approach
The governing equations are solved using a cell-centered finite volume approach and Euler time integration. The gradients in the viscous fluxes are evaluated by applying the Green’s theorem. For the inviscid fluxes, a new approach is introduced, where the original upwind formulation of an FVS scheme is first cast into an equivalent central discretization along with a numerical diffusion term. Subsequently, the numerical diffusion is scaled down by using a novel scaling function that operates based on a boundary layer sensor. The effectiveness of the approach is demonstrated by applying the same on van Leer’s FVS and AUSM schemes. The resulting schemes are named as Diffusion-Regulated van Leer’s FVS-Viscous (DRvLFV) and Diffusion-Regulated AUSM-Viscous (DRAUSMV) schemes.
Findings
The numerical tests show that the DRvLFV scheme shows significant improvement over its parent scheme in resolving the skin friction and wall heat flux profiles. The DRAUSMV scheme is also found marginally more accurate than its parent scheme. However, stability requirements limit the scaling down of only the numerical diffusion term corresponding to the acoustic part of the AUSM scheme.
Originality/value
To the best of the authors’ knowledge, this is the first successful attempt to regulate the numerical diffusion of FVS schemes inside boundary layers by applying a novel scaling function to their artificial viscosity forms. The new methodology can reduce the erroneous smearing of boundary layers by FVS schemes in high-speed flow applications.
Details
Keywords
Sanghoon Lee, Yosheph Yang and Jae Gang Kim
The Fay and Riddell (F–R) formula is an empirical equation for estimating the stagnation-point heat flux on noncatalytic and fully catalytic surfaces, based on an assumption of…
Abstract
Purpose
The Fay and Riddell (F–R) formula is an empirical equation for estimating the stagnation-point heat flux on noncatalytic and fully catalytic surfaces, based on an assumption of equilibrium. Because of its simplicity, the F–R has been used extensively for reentry flight design as well as ground test facility applications. This study aims to investigate the uncertainties of the F-R formula by considering velocity gradient, chemical species at the boundary layer edge, and the thermochemical nonequilibrium (NEQ) behind the shock layer under various hypersonic NEQ flow environments.
Design/methodology/approach
The stagnation-point heat flux calculated with the F–R formula was evaluated by comparison with thermochemical NEQ calculations and existing flight experimental values.
Findings
The comparisons showed that the F–R underestimated the noncatalytic heat flux, because of the chemical composition at the surface. However, for fully catalytic heat flux, the F–R results were similar to values of surface heat flux from thermochemical NEQ calculations, because the F–R formula overestimates the diffusive heat flux. When compared with the surface heat flux results obtained from flight experimental data, the F–R overestimated the fully catalytic heat flux. The error was 50% at most.
Originality/value
The results provided guidelines for the F–R calculations under hypersonic flight conditions and for determining the approximate error range for noncatalytic and fully catalytic surfaces.
Details
Keywords
Sandra Coumar, Romain Joussot, Jean Denis Parisse and Viviana Lago
The purpose of this paper is to describe experimental and numerical investigations focussed on the shock wave modification induced by a dc glow discharge. The model is a flat…
Abstract
Purpose
The purpose of this paper is to describe experimental and numerical investigations focussed on the shock wave modification induced by a dc glow discharge. The model is a flat plate in a rarefied Mach 2 air flow, equipped with a plasma actuator composed of two electrodes. The natural flow without actuation exhibits a shock wave with a hyperbolic shape. When the discharge is on, the shock wave shape remains hyperbolic but the shock wave is pushed forward, leading to an increase in the shock wave angle. In order to discriminate thermal effects from purely plasma ones, the plasma actuator is then replaced by an heating element.
Design/methodology/approach
The experimental study is carried out with the super/hypersonic wind tunnel MARHy located at the ICARE Laboratory in Orléans. The experimental configuration with the heating element is simulated with a code using the 2D full compressible Navier-Stokes equations adapted for the rarefied conditions.
Findings
For heating element temperatures equal to the flat plate wall surface ones with the discharge on, experimental and numerical investigations showed that the shock wave angle was lower with the heating element, only 50 percent of the values got with the plasma actuator, meaning that purely plasma effects must also be considered to fully explain the flow modifications observed. The results obtained with the numerical simulations are then used to calculate the aerodynamic forces, i.e. the drag and the lift. These numerical results are then extrapolated to the plasma actuator case and it was found that the drag coefficient rises up to 13 percent when the plasma actuator is used, compared to only 5 percent with the heating element.
Originality/value
This paper matters in the topic of atmospheric entries where flow control, heat management and aerodynamic forces are of huge importance.
Details
Keywords
Hong-Feng Li, Jun Sun, Xiao-Yong Wang, Lei-Lei Xing and Guang-Zhu Zhang
The purpose of this paper is to add expanded perlite (EP) immobilized microorganisms that replace part of the standard sand in mortar to improve the self-healing ability of mortar…
Abstract
Purpose
The purpose of this paper is to add expanded perlite (EP) immobilized microorganisms that replace part of the standard sand in mortar to improve the self-healing ability of mortar cracks and reduce the water absorption of mortar after healing.
Design/methodology/approach
Bacillus pseudofirmus spores were immobilized with EP particles as self-healing agents. The effects of adding self-healing agents on the compressive strength of mortar specimens were observed. The ability of mortar specimens to heal cracks was evaluated using crack microscopic observation and water absorption experiments. The filler at the cracks was microscopically analyzed by scanning electron microscope and X-ray diffraction experiments.
Findings
First, the internal curing effect of EP promotes the hydration of cement in mortar, which generates more amount and denser crystal structure of Ca(OH)2 at mortar cracks and improves the self-healing ability of mortar. Second, the self-healing ability of mortar improves with the increase of self-healing agent admixture. Adding a self-healing agent of high admixture makes the planar undulation of calcite crystal accumulation at mortar cracks more significant. Finally, the initial crack widths that can be completely healed by adding EP and self-healing agents to the mortar are 200 µm and 600 µm, respectively.
Originality/value
The innovation points of this study are as follows. (1) The mechanism of the internal curing effect of EP particles on the self-healing ability of mortar cracks was revealed by crack microscopic observation tests and microscopic experiments. (2) The effect of different self-healing agent amounts on the self-healing ability of mortar cracks has been studied. (3) The effects of EP particles and self-healing agents on healing different initial widths were elucidated by crack microscopic observation tests.
Graphical abstract
Details
Keywords
Daniel Totouom and Margaret Armstrong
We have developed a new family of Archimedean copula processes for modeling the dynamic dependence between default times in a large portfolio of names and for pricing synthetic…
Abstract
We have developed a new family of Archimedean copula processes for modeling the dynamic dependence between default times in a large portfolio of names and for pricing synthetic CDO tranches. After presenting a general procedure for constructing these processes, we focus on a specific one with lower tail dependence as in the Clayton copula. Using CDS data as on July 2005, we show that the base correlations given by this model at the standard detachment points are very similar to those quoted in the market for a maturity of 5 years.
Vijaya Prasad Burle, Tattukolla Kiran, N. Anand, Diana Andrushia and Khalifa Al-Jabri
The construction industries at present are focusing on designing sustainable concrete with less carbon footprint. Considering this aspect, a Fibre-Reinforced Geopolymer Concrete…
Abstract
Purpose
The construction industries at present are focusing on designing sustainable concrete with less carbon footprint. Considering this aspect, a Fibre-Reinforced Geopolymer Concrete (FGC) was developed with 8 and 10 molarities (M). At elevated temperatures, concrete experiences deterioration of its mechanical properties which is in some cases associated with spalling, leading to the building collapse.
Design/methodology/approach
In this study, six geopolymer-based mix proportions are prepared with crimped steel fibre (SF), polypropylene fibre (PF), basalt fibre (BF), a hybrid mixture consisting of (SF + PF), a hybrid mixture with (SF + BF), and a reference specimen (without fibres). After temperature exposure, ultrasonic pulse velocity, physical characteristics of damaged concrete, loss of compressive strength (CS), split tensile strength (TS), and flexural strength (FS) of concrete are assessed. A polynomial relationship is developed between residual strength properties of concrete, and it showed a good agreement.
Findings
The test results concluded that concrete with BF showed a lower loss in CS after 925 °C (i.e. 60 min of heating) temperature exposure. In the case of TS, and FS, the concrete with SF had lesser loss in strength. After 986 °C and 1029 °C exposure, concrete with the hybrid combination (SF + BF) showed lower strength deterioration in CS, TS, and FS as compared to concrete with PF and SF + PF. The rate of reduction in strength is similar to that of GC-BF in CS, GC-SF in TS and FS.
Originality/value
Performance evaluation under fire exposure is necessary for FGC. In this study, we provided the mechanical behaviour and physical properties of SF, PF, and BF-based geopolymer concrete exposed to high temperatures, which were evaluated according to ISO standards. In addition, micro-structural behaviour and linear polynomials are observed.