Search results
1 – 3 of 3Libiao Bai, Xuyang Zhao, ShuYun Kang, Yiming Ma and BingBing Zhang
Research and development (R&D) projects are often pursued through a project portfolio (PP). R&D PPs involve many stakeholders, and without proactive management, their interactions…
Abstract
Purpose
Research and development (R&D) projects are often pursued through a project portfolio (PP). R&D PPs involve many stakeholders, and without proactive management, their interactions may lead to conflict risks. These conflict risks change dynamically with different stages of the PP life cycle, increasing the challenge of PP risk management. Existing conflict risk research mainly focuses on source identification but lacks risk assessment work. To better manage the stakeholder conflict risks (SCRs) of R&D PPs, this study employs the dynamic Bayesian network (DBN) to construct its dynamic assessment model.
Design/methodology/approach
This study constructs a DBN model to assess the SCRs in R&D PP. First, an indicator system of SCRs is constructed from the life cycle perspective. Then, the risk relationships within each R&D PPs life cycle stage are identified via interpretative structural modeling (ISM). The prior and conditional probabilities of risks are obtained by expert judgment and Monte Carlo simulation (MCS). Finally, crucial SCRs at each stage are identified utilizing propagation analysis, and the corresponding risk responses are proposed.
Findings
The results of the study identify the crucial risks at each stage. Also, for the crucial risks, this study suggests appropriate risk response strategies to help managers better perform risk response activities.
Originality/value
This study dynamically assesses the stakeholder conflict risks in R&D PPs from a life-cycle perspective, extending the stakeholder risk management research. Meanwhile, the crucial risks are identified at each stage accordingly, providing managerial insights for R&D PPs.
Details
Keywords
Yanzheng Tuo, Jiankai Wu, Jingke Zhao and Xuyang Si
This paper aims to systematically review the application of artificial intelligence (AI) in the tourism industry. By integrating human–computer interaction, machine learning, big…
Abstract
Purpose
This paper aims to systematically review the application of artificial intelligence (AI) in the tourism industry. By integrating human–computer interaction, machine learning, big data and other relevant technologies, the study establishes a comprehensive research framework that explores the systematic connections between AI and various facets of tourism.
Design/methodology/approach
This paper conducts a keyword co-occurrence analysis of 4,048 articles related to AI in tourism. The analysis identifies and classifies dominant topics, which are further refined through thematic literature review and manual coding for detailed discussion.
Findings
The analysis reveals five main topics: AI’s impact on tourist experience, AI in tourism marketing and prediction, AI in destination management, AI’s role in tourism enterprises and AI integration in strategic and regulatory framework. Each topic is reviewed to construct an integrated discussion that maps the current landscape and suggests directions for future research.
Originality/value
This paper transcends the fragmented discourse commonly found in the literature by establishing a unified framework that not only enhances understanding of the existing methodologies, theories and applications of AI in tourism but also identifies critical areas for breakthroughs, aiming to inspire a more humane and sustainable integration of AI in the tourism industry.
研究目的
本文旨在系统回顾人工智能(AI)在旅游业中的应用。通过整合人机交互、机器学习、大数据和其他相关技术, 本研究建立了一个全面的研究框架, 探索人工智能与旅游业各方面之间的系统联系。
研究设计
本文对4048篇与旅游业人工智能相关的文章进行了关键词共现分析。分析确定了主要议题并对其进行了分类, 然后通过主题文献梳理和手动编码对其进行了进一步完善, 以便进行详细讨论。
研究结果
分析揭示了五个主要主题:人工智能与旅游体验、人工智能与旅游营销和预测、人工智能与目的地管理、人工智能与旅游企业, 以及人工智能在战略和监管框架中的整合。每个主题都进行了回顾, 以构建一个综合讨论, 勾勒出当前的研究格局, 并提出了未来的研究方向。
研究原创性
研究力图突破目前关于旅游与人工智能的碎片化讨论, 建立了一个统一的框架, 旨在加强对旅游业中人工智能现有方法、理论和应用的理解, 还点明了需要突破的关键领域, 以助力旅游业与人工智能共同创造更加人性化和可持续发展的前景。
Objetivo
Este artículo pretende revisar sistemáticamente la aplicación de la inteligencia artificial (IA) en el sector turístico. Mediante la integración de la interacción humano-ordenador, el aprendizaje automático, big data y otras tecnologías relevantes, el estudio establece un marco de investigación exhaustivo que explora las conexiones sistemáticas entre la IA y diversas facetas del turismo.
Diseño/metodología/enfoque
Este trabajo realiza un análisis de co-ocurrencia de palabras clave de 4.048 artículos relacionados con la IA en el turismo. El análisis identifica y clasifica los temas dominantes, sobre los que se profundiza mediante una revisión temática de la literatura y una codificación manual para su discusión detallada.
Resultados
El análisis presenta cinco temas principales: El impacto de la IA en la experiencia turística, la IA en el marketing y la predicción turística, la IA en la gestión de destinos, el papel de la IA en las empresas turísticas y la integración de la IA en el marco estratégico y normativo. Cada tema se revisa para construir un debate integrado que trace el panorama actual y sugiera direcciones para futuras investigaciones.
Originalidad/valor
Este artículo expande el análisis fragmentado que suele encontrarse en la bibliografía al establecer un marco unificado que no sólo mejora la comprensión de las metodologías, teorías y aplicaciones existentes de la IA en el turismo, sino que también identifica las áreas críticas para los avances, con el objetivo de inspirar una integración más humana y sostenible de la IA en la industria turística.
Details
Keywords
Xuyang Jin, Jing Wang, Yiming Han, Nannan Sun and Jianrong Zhu
This study aims to present the discrepancy in oil film distribution in reciprocating motion experimentally with zero entraining velocity (ZEV) on a conventional ball-disk test rig…
Abstract
Purpose
This study aims to present the discrepancy in oil film distribution in reciprocating motion experimentally with zero entraining velocity (ZEV) on a conventional ball-disk test rig with oil lubrication.
Design/methodology/approach
Driven independently by two individual servomotors, a steel ball and a sapphire disc move at equal speed but in opposite directions in a triangle wave. The oil film images between the ball and the disc were recorded by a camera. After the experiments, the mid-section film thickness was evaluated by using a dichromatic interference intensity modulation approach.
Findings
The dimpled oil film in transient condition is shallower than that at steady state with the same load and velocities, and the transient dimple depth decreases with the decrease of time. The increase of the applied load offers a beneficial effect on lubrication. Boundary slippage happens in ZEV reciprocating motion. The slippage at the interface is related to the transient effect and applied load.
Originality/value
This study reveals the significant difference of the oil film variation in ZEV reciprocating motion, especially the complex boundary slippage at the interface of the oil and the sapphire disc.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2020-0021
Details