Yun He, Fanghong Sun and Xuelin Lei
This study aims to obtain diamond-coated mechanical seals with improved sealing performance and considerable cost. To achieve this purpose, the study focuses on depositing…
Abstract
Purpose
This study aims to obtain diamond-coated mechanical seals with improved sealing performance and considerable cost. To achieve this purpose, the study focuses on depositing uniform, wear-resistant and easily polished diamond coatings on massive mechanical seals in a large-scale vacuum chamber.
Design/methodology/approach
The computational fluid dynamics simulation test and its corresponding deposition experiment are carried out to improve the uniformity of diamond films on massive mechanical seals. The polishing properties and sealing performance of mechanical seals coated with three different diamond films (microcrystalline diamond [MCD], nanocrystalline diamond [NCD] and microcrystalline/nanocrystalline diamond [MNCD]) and uncoated mechanical seals are comparatively studied using the polishing tests and dynamic seal tests to obtain the optimized diamond coating type on the mechanical seals.
Findings
The substrate rotation and four gas outlets distribution are helpful for depositing uniform diamond coatings on massive mechanical seals. The MNCD-coated mechanical seal shows the advantages of high polishing efficiency in the initial polishing process and excellent wear resistance and self-lubrication property in the follow-up polishing period because of its unique composite diamond film structures. The MNCD-coated mechanical seal shows the longest working life under dry friction condition, about 14, 1.27 and 1.9 times of that for the uncoated, MCD and NCD coated mechanical seals, respectively.
Originality/value
The effect of substrate rotation and gas outlets distribution on temperature and gas flow field during diamond deposition procedure is simulated. The MNCD-coated mechanical seal exhibits a superior sealing performance compared with the MCD-coated, NCD-coated and uncoated mechanical seals, which is helpful for decreasing the operating system shut-down frequency and saving operating energy consumption.
Details
Keywords
The profound impact of the COVID-19 pandemic on the film industry has underscored the growing significance of online movies. However, there is limited research available on the…
Abstract
Purpose
The profound impact of the COVID-19 pandemic on the film industry has underscored the growing significance of online movies. However, there is limited research available on the factors that influence the viewership of online films. Therefore, this study aims to use the signaling theory to investigate how signals of varying qualities affect online movie viewership, considering both signal transmission costs and prices.
Design/methodology/approach
This study uses a sample of 1,071 online movies released on the iQiyi from July 2020 to July 2022. It uses OLS regression and instrumental variable method to examine the impact of various quality indicators on the viewership of online movies, as well as the moderating effect of price.
Findings
After conducting a thorough analysis of this study, it can be deduced that the varying impacts on online movie viewership are attributed to disparities in signal transmission costs. Specifically, star influence and rating exhibit a positive effect on the viewership of online movies, whereas the number of raters has a detrimental impact. Furthermore, there exists an “inverted U-shaped” relationship between the number of reviews and online movie viewership. Additionally, within the consumer decision-making process, both price-cost and price-quality relationships coexist. This is evident as prices negatively affect online movie viewership but positively moderate the relationship between rating, number of reviews and online movie viewership.
Originality/value
The research findings of this study offer valuable insights for online film producers to effectively leverage quality signals and pricing, thereby capturing market attention and enhancing film profitability.