Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 30 September 2019

Bohao Xu, Xiaodong Tan, Xizhi Gu, Donghong Ding, Yuelin Deng, Zhe Chen and Jing Xu

Once an uneven substrate is aligned, traditional control theories and methods can be used on it, so aligning is of great significance for the development of wire and arc additive…

398

Abstract

Purpose

Once an uneven substrate is aligned, traditional control theories and methods can be used on it, so aligning is of great significance for the development of wire and arc additive manufacturing (WAAM). This paper aims to propose a shape-driven control method for aligning a substrate with slopes to expand the application of WAAM.

Design/methodology/approach

A substrate with slopes must be aligned by depositing weld beads with slopes. First, considering the large height differences of slopes, multi-layer deposition is needed, and the number of layer of weld beads must be ascertained. Second, the change in the deposition rate is controlled as a ramp function to generate weld beads with slopes. Third, the variation of the deposition rate must be fine-tuned to compensate for the deviation between the actual and theoretical layer heights at the deposition of each layer. Finally, the parameters of the ramp functions at the deposition of each layer are determined through an optimization method.

Findings

First, to model the response function of layer height to deposition rate, the experiments are conducted with the deposition rate jumping from 4 to 8 mm/s and from 8 to 4 mm/s. When the deposition rate jumps from 4 to 8 mm/s and from 8 to 4 mm/s, the difference in the height of each layer decreases as the number of layer increases. Second, the variation of the deposition rate can be fine-tuned based on the deviation between the measured and theoretical layer heights because the variation of the deposition rate is proportional to the layer height when the initial and end deposition rates are near 4 or 8 mm/s, respectively. Third, the experimental results demonstrate that the proposed method is effective for single-layer aligning and aligning a substrate with one or more slopes.

Originality/value

The proposed method can expand the application of WAAM to an uneven substrate with slopes and lays the foundation for aligning tasks focused on uneven substrates with more complex shapes.

Details

Rapid Prototyping Journal, vol. 25 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 4 October 2018

Jing Xu, Xizhi Gu, Donghong Ding, Zengxi Pan and Ken Chen

The purpose of this paper is to systematically review the published slicing methods for additive manufacturing (AM), especially the multi-direction and non-layerwise slicing…

1272

Abstract

Purpose

The purpose of this paper is to systematically review the published slicing methods for additive manufacturing (AM), especially the multi-direction and non-layerwise slicing methods, which are particularly suitable for the directed energy deposition (DED) process to improve the surface quality and eliminate the usage of support structures.

Design/methodology/approach

In this paper, the published slicing methods are clarified into three categories: the traditional slicing methods (e.g. the basic and adaptive slicing methods) performed in the powder bed fusion (PBF) system, the multi-direction slicing methods and non-layerwise slicing methods used in DED systems. The traditional slicing methods are reviewed only briefly because a review article already exists for them, and the latter two slicing methods are reviewed comprehensively with further discussion and outlook.

Findings

A few traditional slicing approaches were developed in the literature, including basic and adaptive slicing methods. These methods are efficient and robust when they are performed in the PBF system. However, they are retarded in the DED process because costly support structures are required to sustain overhanging parts and their surface quality and contour accuracy are not satisfactory. This limitation has led to the development of various multi-direction and non-layerwise slicing methods to improve the surface quality and enable the production of overhangs with minimum supports.

Originality/value

An original review of the AM slicing methods is provided in this paper. For the traditional slicing methods and the multi-direction and non-layerwise slicing method, the published slicing strategies are discussed and compared. Recommendations for future slicing work are also provided.

Details

Rapid Prototyping Journal, vol. 24 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 2 of 2
Per page
102050