Search results

1 – 3 of 3
Article
Publication date: 6 November 2024

Zhiping Zhu, Chen Tian, Xiyao Shi, Tao Li and Shangming Zhou

The purpose of this paper is to study the effect of nano polypyrrole-modified boron nitride on the performance of phosphate film.

Abstract

Purpose

The purpose of this paper is to study the effect of nano polypyrrole-modified boron nitride on the performance of phosphate film.

Design/methodology/approach

By adding polypyrrole-modified boron nitride to the phosphate solution, a phosphate film is formed on the metal surface, improving its corrosion resistance. The effect of different concentrations of polypyrrole-modified boron nitride on the corrosion resistance of Q235 carbon steel surface was studied. The corrosion resistance of the phosphate film was evaluated using the copper sulfate drop test. The electrochemical corrosion performance of the phosphate film was assessed using the weak polarization curve method and electrochemical impedance spectroscopy. The surface of the samples was characterized using scanning electron microscopy and X-ray diffraction analysis.

Findings

The results show that samples containing polypyrrole-modified boron nitride have a denser and more uniform phosphate film. When the concentration of polypyrrole-modified boron nitride is 0.6 g/L, the drop time of copper sulfate on the formed phosphate film can reach 219 s, which is a 189% increase compared to the performance of the sample without the additive. The current density is 1.06 × 10−6 A/cm2 lower than that of the pure phosphate film, indicating the best corrosion resistance. Polypyrrole-modified boron nitride effectively promotes the formation of the phosphate film.

Originality/value

This study used the modification of phosphate solution using nanoparticles to investigate the influence of different nanoparticle concentrations on the phosphate film. The corrosion resistance of the phosphate film was enhanced, providing a method and theoretical guidance for the improvement of phosphate solution formulation.

Details

Anti-Corrosion Methods and Materials, vol. 72 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 7 August 2018

Guanchen Lu, Xiaoliang Shi, Ao Zhang, Yuchun Huang and Xiyao Liu

This paper aims to predict and evaluate the wear rate of TiAl-2 Wt.% MoO3 tabular crystals (TMCs) using the Newton interpolation methods.

Abstract

Purpose

This paper aims to predict and evaluate the wear rate of TiAl-2 Wt.% MoO3 tabular crystals (TMCs) using the Newton interpolation methods.

Design/methodology/approach

The friction and wear behaviors of TMC were examined using pin-on-disc apparatus at different times, namely, 1,200, 2,400, 3,600, 4,800 and 6,000 s. The wear rates of five different times as interpolation nodes were measured and calculated by electron probe microanalysis (EMPA) and field emission electron microscope (FESEM). Then, the prediction formula of wear rate was constructed using the Newton interpolation method. The accuracy of the prediction formula and the relationship with friction layer and worn surface are verified for evaluating the reliability of the prediction formula.

Findings

The prediction formula shows a similar variation trend of TMC as the experimental results, indicating that the prediction formula can forecast the wear rate and working condition of TMC. Moreover, the microstructures of friction layer and worn surface also have a strong impact on the prediction formulas.

Originality/value

The prediction formulas of the Newton interpolation polynomial can be adopted to predict working longevity in the mechanical components, which can guide the practical engineering application in industrial fields.

Details

Industrial Lubrication and Tribology, vol. 70 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 October 2018

Kang Yang, Hongru Ma, Xiyao Liu and Yangming Zhang

This paper aims to study the micro-structure evolution of friction layers to optimize the friction and wear behaviors of TiAl-based material. It further enlarges the scope of…

Abstract

Purpose

This paper aims to study the micro-structure evolution of friction layers to optimize the friction and wear behaviors of TiAl-based material. It further enlarges the scope of using TiAl alloys and increase in the service life of TiAl alloy-made mechanical components, especially under some extreme conditions.

Design/methodology/approach

To study the structure evolution of friction layers, the HT-1000 tribometer is used to study the friction and wear properties of as-prepared samples. With the assistance of field emission scanning electron microscopy and an electron probe micro-analyzer, the stratified structures in cross-sections and a surface morphology of the wear scars are well characterized. A ST400 surface profiler helps in better understanding of the three-dimensional texture profiles of wear scars. X-ray diffractometer (XRD) is also used to analyze phases in the as-prepared samples.

Findings

An analysis method on the micro-structure evolution can provide better views to understand the influence of friction layers on the tribological behavior, at different wear stages. It finds that the micro-structure evolution of friction layers has an immediate effect on the friction coefficients and wear rates of TiAl-based material. It also proves to be a useful tool for evaluating the behaviors in friction and wear of TiAl-based material.

Originality/value

The findings of this paper provide better assistance to explore the effect of friction layers on the friction and wear behaviors of TiAl-based materials. The results help in deep understanding of the micro-structure evolution of friction layers. It also increases the service life of TiAl-based mechanical components.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 3 of 3