Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 6 December 2022

Xinhong Zou, Hongchang Ding and Jinhong Li

This paper aims to present a sliding mode control method based on disturbance observer (DO) for improving the reaching law of permanent magnet synchronous motor (PMSM).

164

Abstract

Purpose

This paper aims to present a sliding mode control method based on disturbance observer (DO) for improving the reaching law of permanent magnet synchronous motor (PMSM).

Design/methodology/approach

Aiming at the insufficiency of the traditional exponential reaching law used in sliding mode variable structure control, an exponential reaching law related to the speed error is proposed. The improved exponential reaching law can adaptively adjust the size of the constant velocity term in the reaching law according to the size of the speed error, so as to adaptively adjust the speed of the system approaching the sliding mode surface to overcome the control deviation and improve the dynamic and steady state performance. To improve the anti-interference ability of the system, a DO is proposed to observe the external disturbance of the system, and the observed value is used to compensate the system. The stability of the system is analyzed by Lyapunov theorem. The effectiveness of this method is proved by simulation and experiment.

Findings

Simulation and experiment show that the proposed method has the advantages of fast response and strong anti-interference ability.

Research limitations/implications

The proposed method cannot observe the disturbance caused by the change of internal parameters of the system.

Originality/value

A sliding mode control method for PMSM is proposed, which has good control performance. The proposed method can effectively suppress chattering, ensure fast response speed and have strong anti-interference ability. The effectiveness of the algorithm is verified by simulation and experiment.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Available. Open Access. Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

862

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 5 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

1 – 2 of 2
Per page
102050