Xingwen Wu, Zhenxian Zhang, Wubin Cai, Ningrui Yang, Xuesong Jin, Ping Wang, Zefeng Wen, Maoru Chi, Shuling Liang and Yunhua Huang
This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.
Abstract
Purpose
This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.
Design/methodology/approach
Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators. Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration. This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration, including a brief introduction of short-pitch irregularities, associated high frequency vibration in railway bogie, typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.
Findings
The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms. The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components. The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure, and the fatigue crack usually initiates from the defect of the weld seam. Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities. The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment, and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.
Originality/value
The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.
Details
Keywords
Passivity theory is closely related to both electrical network and circuit analysis methods. The purpose of this paper is to try to establish some basic results on the uncertain…
Abstract
Purpose
Passivity theory is closely related to both electrical network and circuit analysis methods. The purpose of this paper is to try to establish some basic results on the uncertain discrete‐time fuzzy systems.
Design/methodology/approach
Applying the classical and effective Lyapunov function method and the powerful linear matrix inequality toolbox in MATLAB, the paper provides some sufficient conditions to verify the passivity of the uncertain discrete‐time fuzzy systems, or to passify such a system.
Findings
For uncertain discrete‐time fuzzy systems, its passivity can be easily verified numerically, and its passification can also be fulfilled.
Practical implications
A very effective and convenient criterion is provided to test the passivity of practical nonlinear discrete‐time system or to passify it.
Originality/value
This paper first treats this topic on uncertain discrete‐time fuzzy systems and obtains some important results.
Details
Keywords
Xin Zhou, Wenbin Zhou, Yang Zheng Zhang, Meng-Ran Li, Haijing Sun and Jie Sun
This paper aims to study the corrosion inhibition behavior of imidazopyridine and its three derivatives on brass.
Abstract
Purpose
This paper aims to study the corrosion inhibition behavior of imidazopyridine and its three derivatives on brass.
Design/methodology/approach
The authors performed weight loss experiments, electrochemical experiments including the polarization curve and electrochemical impedance spectrum, corrosion morphology observation using scanning electron microscope (SEM) and atomic force microscope (AFM) and surface composition analysis via X-ray photoelectron spectroscopy (XPS) to analyze the corrosion inhibition behavior of imidazopyridine and its three derivatives on brass by using quantum chemical calculation (Gaussian 09), molecular dynamics simulation (M-S) and Langmuir adsorption isotherm.
Findings
According to the results, imidazole-pyridine and its derivatives were found to be modest or moderately mixed corrosion inhibitors; moreover, they were spontaneously adsorbed on the metal surface in a single-layer, mixed adsorption mode.
Originality/value
The corrosion inhibition properties of pyrazolo-[1,2-a]pyridine and its derivatives on brass in sulfuric acid solution were analyzed through weight loss and electrochemical experiments. Moreover, SEM and AFM were simultaneously used to observe the corrosion appearance. Furthermore, XPS was used to analyze the surface. Then, Gaussian 09 and M-S were combined along with the Langmuir adsorption isotherm to investigate the corrosion inhibition mechanism of imidazole-[1,2-a]pyridine and its derivatives.