Search results
1 – 2 of 2Kaiyan Yang, Xiaowu Gong, Lanli Bai, Yun Zhang and Na Zhou
This study aims to prepare a low-formaldehyde and environmentally friendly glucose-lignin-based phenolic resin.
Abstract
Purpose
This study aims to prepare a low-formaldehyde and environmentally friendly glucose-lignin-based phenolic resin.
Design/methodology/approach
The authors directly used lignin to substitute formaldehyde to prepare lignin-based phenolic resin (LPF) with urea as formaldehyde absorbent. To improve the performance of the adhesive, the biobased glucose was introduced and the modified glucose-LPF (GLPF) was obtained.
Findings
The results showed that when the replacing amount of lignin to formaldehyde reached 15 Wt.%, the physical properties of the prepared LPF met the Chinese national standard, and the bonding strength increased by 21.9%, from 0.75 to 0.96 MPa, compared with PF. The addition of glucose boost the performance of wood adhesive, for example, the free phenol content of the obtained GLPF was significantly reduced by 79.11%, from 5.60% to 1.17%, the bonding strength (1.19 MPa) of GLPF increased by 19.3% in comparison to LPF and the curing temperature of GLPF decreased by 13.08%.
Practical implications
The low-formaldehyde and environmentally friendly GLPF has higher bonding strength and lower curing temperature, which is profitable to industrial application.
Social implications
The prepared GLPF has lower free formaldehyde and formaldehyde emission, which is cost-effective and beneficial to human health.
Originality/value
The joint work of lignin and glucose provides the wood adhesive with increased bonding strength, decreased free phenol content and reduced curing temperature.
Details
Keywords
In recent years, high‐altitude/long‐endurance airship platforms have generated great interest as a means to provide communications and surveillance capabilities. The purpose of…
Abstract
Purpose
In recent years, high‐altitude/long‐endurance airship platforms have generated great interest as a means to provide communications and surveillance capabilities. The purpose of this paper is to develop a model for airship conceptual design and help provide insight into the viability of high‐altitude/long‐endurance airships.
Design/methodology/approach
A configuration analysis model with the consideration of pressure difference, temperature difference, and helium purity, etc. was developed. The influences of the airship payload, size and area required of solar cell with environment and operation parameters, such as operation latitude, pressure difference, temperature difference, helium purity, seasons, latitude, and wind speed, etc. were analyzed.
Findings
The results show that the area of solar cell required for stratospheric airship is very large under the condition of low altitude, high latitude, wind, and in winter, etc. which might make the design of high‐altitude/long‐endurance airship an elusive goal. They also show that the solar cell efficiency is the key technology in the control of solar cell area required for airships, and the technology advances in regenerative fuel cells and propeller efficiency have significant effects among on the airship payload, size, and solar cell area required for airship.
Originality/value
The paper analyses the energy balance of the high‐altitude/long‐endurance airship.
Details