Haiming Huang, Guo Huang, Xiaoliang Xu and Weijie Li
Relevant analyses are presented on the base of the compressible vortex method for simulating the development of two or three co-rotating vortices with different characteristic…
Abstract
Purpose
Relevant analyses are presented on the base of the compressible vortex method for simulating the development of two or three co-rotating vortices with different characteristic Mach numbers. The paper aims to discuss this issue.
Design/methodology/approach
In addition to having vorticity and dilatation properties, the vortex particles also carry density, enthalpy, and entropy. Taking co-rotating vortices in two-dimensional unsteady compressible flow for an example, truncation of unbounded domains via a nonreflecting boundary condition was considered in order to make the method computationally efficient.
Findings
For two identical vortices, the effect of the vortex Mach number on merging process is not evident; if two vortices have the same circulation rather than different radiuses, the vorticity and dilatation fields of the vortex under a vortex Mach number will be absorbed by the vortex under a higher vortex Mach number. For three vortices, if the original arrangement of the vortices is changed, the evolvement of the vorticity and dilatation fields is different.
Originality/value
The paper reveals new mechanism of the three co-rotating vortices by a feasible compressible vortex method.
Details
Keywords
Weijie Li, Haiming Huang, Hailing Yu and Xiaoliang Xu
The effective heat capacity is a key index to estimate the thermal protection performance of charring ablative materials in reentry vehicles subjected to aerodynamic heat loads…
Abstract
Purpose
The effective heat capacity is a key index to estimate the thermal protection performance of charring ablative materials in reentry vehicles subjected to aerodynamic heat loads. The purpose of this paper is to investigate the effects of gradient density on the effective heat capacity.
Design/methodology/approach
Based on the Fourier law and the pyrolysis interface model, the authors establish the governing equations for the transient heat conduction with variable density, and then simulate one-dimensional transient thermal behavior of a homogeneous and three types of non-homogeneous charring ablative material in reentry capsules by using the implicit numerical method.
Findings
The moving rate of pyrolysis interface and the surface temperature of charring ablative material depend on not only the surface heating history, but also the gradient density. And the gradient density can improve the insulation performance of charring materials, e.g. the effective heat capacity in the bilinear design is larger than that in the homogeneous design under a given heat flux condition.
Originality/value
This study will help the design of the thermal protection system in reentry vehicles.
Details
Keywords
Bei Ma, Rong Zhou and Xiaoliang Ma
Integrating balance theory and social identify theory, this paper proposes a multilevel model to explain how abusive supervision climate of team impacts the relationship among…
Abstract
Purpose
Integrating balance theory and social identify theory, this paper proposes a multilevel model to explain how abusive supervision climate of team impacts the relationship among team members as well as subordinates’ behavior towards their teammates, especially organizational citizenship behavior (OCB).
Design/methodology/approach
A survey was conducted to collect two-wave and multi-source data from 398 employees nested in 106 teams from Chinese high-technology companies. Hierarchical linear modeling was conducted to examine the theoretical model.
Findings
The results indicate that there is an inverted U-shape association between abusive supervision climate and subordinates’ OCB towards coworker; team member exchange (TMX) mediates their inverted U-shaped link. Furthermore, we confirm that coworker support plays a vitally moderating role upon the curvilinear link of abusive supervision climate (ASC)–TMX; specifically, when employees perceive low coworker support, negative relations between ASC and TMX will be stronger.
Originality/value
This study identifies team members’ advantageous and adverse relational response to shared threat of ASC and examines coworker support as a moderator of ASC, which provides valuable insights into when and why employees tend to cooperate with their teammates to jointly confront their leader’s abuse and highlights the importance of coworkers, thus enabling organizations to deeply understand the wider influences of ASC on interpersonal relationship between team members.
Details
Keywords
Xiaoliang Tang, Jun Zhou, Guangjian Jian, Qingzhu Deng, Wen Zhao, Shaolan Mo, Zuxin She, Yong Zhong, Lun Huang, Chang Shu, Maolin Pan and Zhongwei Wang
The objective of this study is to use non-destructive testing of corrosion on coated aluminium alloys using differential eddy current detection (DECD), with the aim of elucidating…
Abstract
Purpose
The objective of this study is to use non-destructive testing of corrosion on coated aluminium alloys using differential eddy current detection (DECD), with the aim of elucidating the relationship between the characteristics of corrosion defects and the detection signal.
Design/methodology/approach
Pitting corrosion defects of varying geometrical dimensions were fabricated on the surface of aluminium alloy plates, and their impedance signals were detected using DECD to investigate the influence of defect diameter, depth, corrosion products and coating thickness on the detection signals. Furthermore, finite element analysis was used to ascertain the eddy current distributions and detection signals under different parameters.
Findings
The size of the defect is positively correlated with the strength of the detection signal, with the defect affecting the latter by modifying the distribution and magnitude of the eddy current. An increase in the diameter and depth of corrosion defects will enhance the eddy current detection (ECD) signal. The presence of corrosion products in the corrosion defects has no significant effect on the eddy current signal. The presence of a coating results in a decrease in the ECD signal, with the magnitude of this decrease increasing with the thickness of the coating.
Originality/value
The objective is to provide experimental and theoretical references for the design of eddy current non-destructive testing equipment and eddy current testing applications.
Details
Keywords
Assembly sequence planning (ASP) is a crucial job during assembly process design. However, it is still difficult to reuse the existing solution to solve a new ASP problem. In…
Abstract
Purpose
Assembly sequence planning (ASP) is a crucial job during assembly process design. However, it is still difficult to reuse the existing solution to solve a new ASP problem. In particular, with the rapid development of digital technologies, the reusable assembly information of an existing solution is not concentrated in one multimedia but dispersed in multiple heterogeneous multimedia, e.g. text, three-dimensional graphics, even images and videos. This paper aims to propose a multimedia case (MC)-based reasoning framework to solve ASP by reusing the existing solution whose assembly information is dispersed in multimedia.
Design/methodology/approach
The proposed framework is designed with the introduction of the MC. An MC seamlessly integrates the dispersed assembly information of an existing solution. Under the proposed concept and architecture, the assembly information of an existing solution is extracted to build assembly descriptors of multimedia. Therefore, the MC is captured by organizing the assembly descriptors of corresponding multimedia.
Findings
By means of the framework proposed, it is possible to reuse the existing solution whose assembly information is dispersed in multimedia to solve ASP. Moreover, the extraction method of assembly information can flexibly parse most of the multimedia. Finally, the MC has the capability to represent the existing solution by collecting dispersed assembly information.
Originality/value
The proposed framework can discover the similar existing solution and avoid the potential failures confronted in the past so that the feasibility of ASP result can be improved as much as possible.
Details
Keywords
Xiaohong Gao, Yizheng Wang, Tianlong Wang, Feibo Li, Yanming Wang and Xiaoliang Zhang
The anti-friction and anti-wear properties of WS2@GO composites on paraffin liquid were investigated with a four-ball tribometer.
Abstract
Purpose
The anti-friction and anti-wear properties of WS2@GO composites on paraffin liquid were investigated with a four-ball tribometer.
Design/methodology/approach
A series of graphene oxide (GO) nano hybrid composites decorated with tungsten disulfide (WS2) were prepared in-suit by hydrothermal strategy.
Findings
The results showed that compared to the virgin oil, friction coefficient and diameter of wear scare of lubricant oil containing W/G = 1:1 hybrid composite was reduced by 42.7% and 31.6%, respectively. At the microscopic, the excellent lubrication performance resulted from the tribo-chemical reaction on the sliding interface, which promotes the formation of tribo-film with a thickness of 8 nm. The carbonization compound, WO3 and Fe2O3 in the tribo-film results from the tribo-chemical reactions at the sliding interface, which can improve the stability and strength of tribo-film. Thereby the metal surface was further protected from friction and wear.
Originality/value
A series of WS2@GO composites were prepared in-suit by a hydrothermal strategy, and the tribo-film was analyzed by the transmission electron microscope and X-ray photoelectron spectrometer.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2024-0397
Details
Keywords
Guanchen Lu, Xiaoliang Shi, Ao Zhang, Yuchun Huang and Xiyao Liu
This paper aims to predict and evaluate the wear rate of TiAl-2 Wt.% MoO3 tabular crystals (TMCs) using the Newton interpolation methods.
Abstract
Purpose
This paper aims to predict and evaluate the wear rate of TiAl-2 Wt.% MoO3 tabular crystals (TMCs) using the Newton interpolation methods.
Design/methodology/approach
The friction and wear behaviors of TMC were examined using pin-on-disc apparatus at different times, namely, 1,200, 2,400, 3,600, 4,800 and 6,000 s. The wear rates of five different times as interpolation nodes were measured and calculated by electron probe microanalysis (EMPA) and field emission electron microscope (FESEM). Then, the prediction formula of wear rate was constructed using the Newton interpolation method. The accuracy of the prediction formula and the relationship with friction layer and worn surface are verified for evaluating the reliability of the prediction formula.
Findings
The prediction formula shows a similar variation trend of TMC as the experimental results, indicating that the prediction formula can forecast the wear rate and working condition of TMC. Moreover, the microstructures of friction layer and worn surface also have a strong impact on the prediction formulas.
Originality/value
The prediction formulas of the Newton interpolation polynomial can be adopted to predict working longevity in the mechanical components, which can guide the practical engineering application in industrial fields.
Details
Keywords
Bin Zhou, Jin Ma, Hongyan Zhou, Xiaoliang Shi and Ahmed Mohamed Mahmoud Ibrahim
This paper aims to investigate the friction noise properties of M50 matrix curved microporous channel composites filled with solid lubricant Sn-Ag-Cu (MS).
Abstract
Purpose
This paper aims to investigate the friction noise properties of M50 matrix curved microporous channel composites filled with solid lubricant Sn-Ag-Cu (MS).
Design/methodology/approach
Pure M50 (MA) and MS are prepared by selective laser melting and vacuum-pressure infiltration technology. The tribological and friction noise properties of MA and MS are tested through dry sliding friction and then the influential mechanism of surface wear sate on friction noise is investigated by analyzing the variation law of noise signals and the worn surface characteristics of MS.
Findings
Experimental results show that the friction noise sound pressure level of MS is only 75.6 dB, and it mainly consists of low-frequency noise. The Sn-Ag-Cu improves the surface wear state, which reduces self-excited vibration of the interface caused by fluctuation of friction force, leading to the decrease of friction noise.
Originality/value
This investigation is meaningful to improve the tribological property and suppress the friction noise of M50 bearing steel.
Details
Keywords
Yuming Guan, Jingbo Mu, Hongwei Che, Xiaoliang Zhang and Zhixiao Zhang
The purpose of this study is to design carbon electrode materials for high performance electric double-layer capacitors (EDLCs) with pores that are large enough and have suitable…
Abstract
Purpose
The purpose of this study is to design carbon electrode materials for high performance electric double-layer capacitors (EDLCs) with pores that are large enough and have suitable pore size distribution for the electrolyte to access completely to improve EDLCs’ electrochemical performance.
Design/methodology/approach
This study develop an improved traditional KOH activation method, and a series of micro-meso hierarchical porous carbons have been successfully prepared from phenol formaldehyde resin by combining polyethylene glycol (PEG) and conventional KOH activation.
Findings
As evidenced by N2 adsorption/desorption tests, the obtained samples present Types IV and I-IV hybrid shape isotherms compared with KOH-activated resin (typical of Type I). The sample AC2-7-1, which the addition quantity of PEG is 25 per cent PF (weight ration) activated at 700? For 1 h is considered as the optimum preparation condition. It exhibits the highest specific capacitance value of 240 F/g in 30 wt% KOH aqueous electrolytes because of its higher specific surface area (2085 m2/g), greater pore volume (1.08 cm3/g) and the maximum mesoporosity (43 per cent). In addition, the capacity decay of this material is only 3.1 per cent after 1000 cycles.
Originality/value
The materials that are rich in micropores and mesopores show great potential in EDLC capacitors, particularly for applications where high power output and good high-frequency capacitive performances are required.
Details
Keywords
Hongru Ma, Xiaobin Deng, Xiaoliang Shi, Guanchen Lu, Hongyan Zhou, Yuan Chen and Zhenyu Yang
This paper aims to explore the damage mechanism of a lubricating film on the worn surface of solid self-lubricating composites under different loads.
Abstract
Purpose
This paper aims to explore the damage mechanism of a lubricating film on the worn surface of solid self-lubricating composites under different loads.
Design/methodology/approach
By comparing the actual stress with the strength, it is possible to determine the approximate wear state of the lubricating film. To prove the validity of the mathematical model that can predict the initiation of micro cracks or even the failure of the lubricating film, M50-5 Wt.% Ag self-lubricating composites (MA) was prepared. Tribological tests of the composites against Si3N4 ceramic balls were conducted at room temperature from 2 to 8 N. The electron probe microanalysis images of the lubricating film verify the wear state of the lubricating film.
Findings
The study found that the back edge of the contact area is the most vulnerable to destruction. The tensile stress and the equivalent shear stress have a positive correlation with load and friction coefficient. When the load is 4 N, an intact lubricating film covers the worn surface because the tensile stress and the equivalent shear stress are below the tensile strength and the shear strength, respectively; under other working conditions, the lubricating film is destroyed.
Originality/value
This paper has certain theoretical guidance for the study of tribological properties of solid self-lubricating composites. Moreover, this mathematical model is appropriate to be applied for the other composites.