Search results
1 – 8 of 8Qi Wang, Pengcheng Zhang, Jianming Wang, Qingliang Chen, Zhijie Lian, Xiuyan Li, Yukuan Sun, Xiaojie Duan, Ziqiang Cui, Benyuan Sun and Huaxiang Wang
Electrical impedance tomography (EIT) is a technique for reconstructing the conductivity distribution by injecting currents at the boundary of a subject and measuring the…
Abstract
Purpose
Electrical impedance tomography (EIT) is a technique for reconstructing the conductivity distribution by injecting currents at the boundary of a subject and measuring the resulting changes in voltage. Image reconstruction for EIT is a nonlinear problem. A generalized inverse operator is usually ill-posed and ill-conditioned. Therefore, the solutions for EIT are not unique and highly sensitive to the measurement noise.
Design/methodology/approach
This paper develops a novel image reconstruction algorithm for EIT based on patch-based sparse representation. The sparsifying dictionary optimization and image reconstruction are performed alternately. Two patch-based sparsity, namely, square-patch sparsity and column-patch sparsity, are discussed and compared with the global sparsity.
Findings
Both simulation and experimental results indicate that the patch based sparsity method can improve the quality of image reconstruction and tolerate a relatively high level of noise in the measured voltages.
Originality/value
EIT image is reconstructed based on patch-based sparse representation. Square-patch sparsity and column-patch sparsity are proposed and compared. Sparse dictionary optimization and image reconstruction are performed alternately. The new method tolerates a relatively high level of noise in measured voltages.
Details
Keywords
Bo Li, Jian ming Wang, Qi Wang, Xiu yan Li and Xiaojie Duan
The purpose of this paper is to explore gas/liquid two-phase flow is widely existed in industrial fields, especially in chemical engineering. Electrical resistance tomography…
Abstract
Purpose
The purpose of this paper is to explore gas/liquid two-phase flow is widely existed in industrial fields, especially in chemical engineering. Electrical resistance tomography (ERT) is considered to be one of the most promising techniques to monitor the transient flow process because of its advantages such as fast respond speed and cross-section imaging. However, maintaining high resolution in space together with low cost is still challenging for two-phase flow imaging because of the ill-conditioning of ERT inverse problem.
Design/methodology/approach
In this paper, a sparse reconstruction (SR) method based on the learned dictionary has been proposed for ERT, to accurately monitor the transient flow process of gas/liquid two-phase flow in a pipeline. The high-level representation of the conductivity distributions for typical flow regimes can be extracted based on denoising the deep extreme learning machine (DDELM) model, which is used as prior information for dictionary learning.
Findings
The results from simulation and dynamic experiments indicate that the proposed algorithm efficiently improves the quality of reconstructed images as compared to some typical algorithms such as Landweber and SR-discrete fourier transformation/discrete cosine transformation. Furthermore, the SR-DDELM has also used to estimate the important parameters of the chemical process, a case in point is the volume flow rate. Therefore, the SR-DDELM is considered an ideal candidate for online monitor the gas/liquid two-phase flow.
Originality/value
This paper fulfills a novel approach to effectively monitor the gas/liquid two-phase flow in pipelines. One deep learning model and one adaptive dictionary are trained via the same prior conductivity, respectively. The model is used to extract high-level representation. The dictionary is used to represent the features of the flow process. SR and extraction of high-level representation are performed iteratively. The new method can obviously improve the monitoring accuracy and save calculation time.
Details
Keywords
Luyao Wang, Jianying Feng, Xiaojie Sui, Xiaoquan Chu and Weisong Mu
The purpose of this paper is to provide reference for researchers by reviewing the research advances and trend of agricultural product price forecasting methods in recent years.
Abstract
Purpose
The purpose of this paper is to provide reference for researchers by reviewing the research advances and trend of agricultural product price forecasting methods in recent years.
Design/methodology/approach
This paper reviews the main research methods and their application of forecasting of agricultural product prices, summarizes the application examples of common forecasting methods, and prospects the future research directions.
Findings
1) It is the trend to use hybrid models to predict agricultural products prices in the future research; 2) the application of the prediction model based on price influencing factors should be further expanded in the future research; 3) the performance of the model should be evaluated based on DS rather than just error-based metrics in the future research; 4) seasonal adjustment models can be applied to the difficult seasonal forecasting tasks in the agriculture product prices in the future research; 5) hybrid optimization algorithm can be used to improve the prediction performance of the model in the future research.
Originality/value
The methods from this paper can provide reference for researchers, and the research trends proposed at the end of this paper can provide solutions or new research directions for relevant researchers.
Details
Keywords
Hong Wang, Yong Xie, Shasha Tian, Lu Zheng, Xiaojie Dong and Yu Zhu
The purpose of the study is to address the problems of low accuracy and missed detection of occluded pedestrians and small target pedestrians when using the YOLOX general object…
Abstract
Purpose
The purpose of the study is to address the problems of low accuracy and missed detection of occluded pedestrians and small target pedestrians when using the YOLOX general object detection algorithm for pedestrian detection. This study proposes a multi-level fine-grained YOLOX pedestrian detection algorithm.
Design/methodology/approach
First, to address the problem of the original YOLOX algorithm in obtaining a single perceptual field for the feature map before feature fusion, this study improves the PAFPN structure by adding the ResCoT module to increase the diversity of the perceptual field of the feature map and divides the pedestrian multi-scale features into finer granularity. Second, for the CSPLayer of the PAFPN, a weight gain-based normalization-based attention module (NAM) is proposed to make the model pay more attention to the context information when extracting pedestrian features and highlight the salient features of pedestrians. Finally, the authors experimentally determined the optimal values for the confidence loss function.
Findings
The experimental results show that, compared with the original YOLOX algorithm, the AP of the improved algorithm increased by 2.90%, the Recall increased by 3.57%, and F1 increased by 2% on the pedestrian dataset.
Research limitations/implications
The multi-level fine-grained YOLOX pedestrian detection algorithm can effectively improve the detection of occluded pedestrians and small target pedestrians.
Originality/value
The authors introduce a multi-level fine-grained ResCoT module and a weight gain-based NAM attention module.
Details
Keywords
Weiyi Chen, Xinmei Liu and Xiaojie Zhang
The authors investigate when and why a subordinate's expressive suppression facilitates workplace creativity, building on the conservation of resources theory and considering the…
Abstract
Purpose
The authors investigate when and why a subordinate's expressive suppression facilitates workplace creativity, building on the conservation of resources theory and considering the effect of the supervisor's expressive suppression and time pressure as boundary conditions.
Design/methodology/approach
Multisource data were collected from 132 teams in northwestern China, including 132 supervisors and 648 subordinates. Hierarchical regression analyses were used to test the effects.
Findings
The subordinate’s expressive suppression was positively related to their workplace creativity. Challenge time pressure was positively related to workplace creativity, and the subordinate’s expressive suppression was positively related to workplace creativity when challenge time pressure was lower and the supervisor's expressive suppression was higher. Hindrance time pressure was negatively related to workplace creativity, and a positive relationship between a subordinate's expressive suppression and workplace creativity was also found with less hindrance time pressure and greater expressive suppression by their supervisor.
Originality/value
By examining the role of the supervisor as a source of downward spillovers in various time pressure contexts, the study explains why a subordinate’s suppression facilitates workplace creativity from the conservation of resources perspective.
Details
Keywords
Bingzi Jin, Xiaojie Xu and Yun Zhang
Predicting commodity futures trading volumes represents an important matter to policymakers and a wide spectrum of market participants. The purpose of this study is to concentrate…
Abstract
Purpose
Predicting commodity futures trading volumes represents an important matter to policymakers and a wide spectrum of market participants. The purpose of this study is to concentrate on the energy sector and explore the trading volume prediction issue for the thermal coal futures traded in Zhengzhou Commodity Exchange in China with daily data spanning January 2016–December 2020.
Design/methodology/approach
The nonlinear autoregressive neural network is adopted for this purpose and prediction performance is examined based upon a variety of settings over algorithms for model estimations, numbers of hidden neurons and delays and ratios for splitting the trading volume series into training, validation and testing phases.
Findings
A relatively simple model setting is arrived at that leads to predictions of good accuracy and stabilities and maintains small prediction errors up to the 99.273th quantile of the observed trading volume.
Originality/value
The results could, on one hand, serve as standalone technical trading volume predictions. They could, on the other hand, be combined with different (fundamental) prediction results for forming perspectives of trading trends and carrying out policy analysis.
Details
Keywords
Bingzi Jin and Xiaojie Xu
Agriculture commodity price forecasts have long been important for a variety of market players. The study we conducted aims to address this difficulty by examining the weekly…
Abstract
Purpose
Agriculture commodity price forecasts have long been important for a variety of market players. The study we conducted aims to address this difficulty by examining the weekly wholesale price index of green grams in the Chinese market. The index covers a ten-year period, from January 1, 2010, to January 3, 2020, and has significant economic implications.
Design/methodology/approach
In order to address the nonlinear patterns present in the price time series, we investigate the nonlinear auto-regressive neural network as the forecast model. This modeling technique is able to combine a variety of basic nonlinear functions to approximate more complex nonlinear characteristics. Specifically, we examine prediction performance that corresponds to several configurations across data splitting ratios, hidden neuron and delay counts, and model estimation approaches.
Findings
Our model turns out to be rather simple and yields forecasts with good stability and accuracy. Relative root mean square errors throughout training, validation and testing are specifically 4.34, 4.71 and 3.98%, respectively. The results of benchmark research show that the neural network produces statistically considerably better performance when compared to other machine learning models and classic time-series econometric methods.
Originality/value
Utilizing our findings as independent technical price forecasts would be one use. Alternatively, policy research and fresh insights into price patterns might be achieved by combining them with other (basic) prediction outputs.
Details
Keywords
Xiaojie Xu and Yun Zhang
Forecasts of commodity prices are vital issues to market participants and policy makers. Those of corn are of no exception, considering its strategic importance. In the present…
Abstract
Purpose
Forecasts of commodity prices are vital issues to market participants and policy makers. Those of corn are of no exception, considering its strategic importance. In the present study, the authors assess the forecast problem for the weekly wholesale price index of yellow corn in China during January 1, 2010–January 10, 2020 period.
Design/methodology/approach
The authors employ the nonlinear auto-regressive neural network as the forecast tool and evaluate forecast performance of different model settings over algorithms, delays, hidden neurons and data splitting ratios in arriving at the final model.
Findings
The final model is relatively simple and leads to accurate and stable results. Particularly, it generates relative root mean square errors of 1.05%, 1.08% and 1.03% for training, validation and testing, respectively.
Originality/value
Through the analysis, the study shows usefulness of the neural network technique for commodity price forecasts. The results might serve as technical forecasts on a standalone basis or be combined with other fundamental forecasts for perspectives of price trends and corresponding policy analysis.
Details