Search results
1 – 10 of 14Jian Kang, Libei Zhong, Bin Hao, Yuelong Su, Yitao Zhao, Xianfeng Yan and Shuanghui Hao
Most of the linear encoders are based on optics. The accuracy and reliability of these encoders are greatly reduced in polluted and noisy environments. Moreover, these encoders…
Abstract
Purpose
Most of the linear encoders are based on optics. The accuracy and reliability of these encoders are greatly reduced in polluted and noisy environments. Moreover, these encoders have a complex structure and large sensor volume and are thus not suited to small application scenarios and do not have universality. This paper aims to present a new absolute magnetic linear encoder, which has a simple structure, small size and wide application range.
Design/methodology/approach
The effect of swing error is analyzed for the sensor structural arrangement. A double-threshold interval algorithm is then proposed to synthesize multiple interval electrical angles into absolute angles and convert them into actual displacement distances.
Findings
The final linear encoder measurement range is 15.57 mm, and the resolution reaches ± 2 µm. The effectiveness of the algorithm is demonstrated experimentally.
Originality/value
The linear encoder has good robustness, and high measurement accuracy, which is suitable for industrial production. The linear encoder has been mass-produced and used in an electric power-assisted braking system.
Details
Keywords
Lina Si, Yan Pan, Xiaoqing Zhang, Jie Wang, Jia Yao, Yanjie Wang, Fengbin Liu and Feng He
This paper aims to clarify the effects of metallic nanoparticles (NPs) additives and room temperature ionic liquids (ILs) on the tribological performance of electric contacts.
Abstract
Purpose
This paper aims to clarify the effects of metallic nanoparticles (NPs) additives and room temperature ionic liquids (ILs) on the tribological performance of electric contacts.
Design/methodology/approach
Tribological properties of copper (Cu) and silver (Ag) NPs as lubricant additives in different lubricants of ILs or polyalphaolefin (PAO) oils under applied electric currents were investigated. After tribological tests, morphologies of worn surfaces were observed; meanwhile, lubrication and anti-wear properties were analyzed.
Findings
The mixture solution of the IL and Cu NPs showed desirable lubrication and anti-wear properties due to the reduction of electrocorrosion and the enhancement of rolling effects of particles in the contact region. The anti-wear performance of Cu NPs is better than that of Ag NPs due to the difference in the particle size. The PAO oil with the Cu NPs additives showed poor lubrication properties due to the low solubility of the particles in the oil. When the direction of applied current was changed, the friction of the lubricant with better conductivity was more stable in the variation trend.
Originality/value
This paper begins with a study of tribological properties of Cu and Ag NPs as lubricant additives in different lubricants of IL or PAO oils under applied electric currents. The authors then propose several methods and possible solutions which could be implemented to improve the tribological performance of electric contacts.
Details
Keywords
Dan Luo and Ronghua Ju
The purpose of the paper is to examine China's county‐level fiscal difficulties. A large portion of China's counties (county‐level cities) have to run with the shortage of…
Abstract
Purpose
The purpose of the paper is to examine China's county‐level fiscal difficulties. A large portion of China's counties (county‐level cities) have to run with the shortage of financial resources and huge government debt. To make a suitable policy to solve this problem is a top priority.
Design/methodology/approach
Using the first‐hand survey data, the paper compares nine sample counties whose economic development level is different, sums up the difficulties county‐level governments are facing and explores countermeasures from qualitative and quantitative approaches.
Findings
By studying the survey data of nine sample counties (cities), it is found that county‐level finance is facing the following problems: low‐level fiscal revenue, high debt risk and large gap of fiscal revenue between different counties (cities). Based on these findings, the paper provides suggestions such as ensuring that the county‐level government has sufficient fiscal resources and improving the transfer payment system.
Originality/value
Data from three well‐developed counties (county‐level cities), three middle‐income counties (county‐level cities) and three backward counties made the paper's findings more comprehensive and realistic and suggestions more practical.
Details
Keywords
Yanlan Mei, Ping Gui, Xianfeng Luo, Benbu Liang, Liuliu Fu and Xianrong Zheng
The purpose of this paper is to take advantage of Internet of Things (IoT) for intelligent route programming of crowd emergency evacuation in metro station. It is a novel approach…
Abstract
Purpose
The purpose of this paper is to take advantage of Internet of Things (IoT) for intelligent route programming of crowd emergency evacuation in metro station. It is a novel approach to ensure the crowd safety and reduce the casualties in the emergency context. An evacuation route programming model is constructed to select a suitable evacuation route and support the emergency decision maker of metro station.
Design/methodology/approach
The IoT technology is employed to collect and screen information, and to construct an expert decision model to support the metro station manager to make decision. As a feasible way to solve the multiple criteria decision-making problem, an improved multi-attributive border approximation area comparison (MABAC) approach is introduced.
Findings
The case study indicates that the model provides valuable suggestions for evacuation route programming and offers practical support for the design of an evacuation route guidance system. Moreover, IoT plays an important role in the process of intelligent route programming of crowd emergency evacuation in metro station. A library has similar structure and crowd characteristics of a metro station, thus the intelligent route programming approach can be applied to the library crowd evacuation.
Originality/value
The highlights of this paper are listed as followings: the accuracy and accessibility of the metro station’s real-time information are improved by integrating IoT technology with the intelligent route programming of crowd emergency evacuation. An improved MABAC approach is introduced to the expert support model. It promotes the applicability and reliability of decision making for emergency evacuation route selection in metro station. It is a novel way to combine the decision-making methods with practice.
Details
Keywords
Weishi Chen, Yifeng Huang, Xianfeng Lu and Jie Zhang
This paper aims to review the critical technology development of avian radar system at airports.
Abstract
Purpose
This paper aims to review the critical technology development of avian radar system at airports.
Design/methodology/approach
After the origin of avian radar technology is discussed, the target characteristics of flying birds are analyzed, including the target echo amplitude, flight speed, flight height, trajectory and micro-Doppler. Four typical airport avian radar systems of Merlin, Accipiter, Robin and CAST are introduced. The performance of different modules such as antenna, target detection and tracking, target recognition and classification, analysis of bird information together determines the detection ability of avian radar. The performances and key technologies of the ubiquitous avian radar are summarized and compared with other systems, and their applications, deployment modes, as well as their advantages and disadvantages are introduced and analyzed.
Findings
The ubiquitous avian radar achieves the long-time integration of target echoes, which greatly improves detection and classification ability of the targets of birds or drones, even under strong background clutter at airport. In addition, based on the big data of bird situation accumulated by avian radar, the rules of bird activity around the airport can be mined to guide the bird avoidance work.
Originality/value
This paper presented a novel avian radar system based on ubiquitous digital radar technology. The authors’ experience has confirmed that this system can be effective for airport bird strike prevention and management. In the future, the avian radar system will see continued improvement in both software and hardware, as the system is designed to be easily extensible.
Details
Keywords
Mehdi Salehi and Mansour Azami
The purpose of this paper is to develop a new structural damage detection technique based on multi-channel empirical mode decomposition (MEMD) of vibrational response data.
Abstract
Purpose
The purpose of this paper is to develop a new structural damage detection technique based on multi-channel empirical mode decomposition (MEMD) of vibrational response data.
Design/methodology/approach
Empirical mode decomposition (EMD) is an empirical data-based signal decomposition method which has been applied in many engineering problems. Utilizing classical EMD to reveal the damage-indicating features of structural vibration response encounters some difficulties due to the inconsistency of modes obtained from different data channels. To overcome this problem, MEMD has been employed. To this end, MEMD algorithm has been adopted to impulse response vector of measured DOFs. The proposed method has been carried out concerning both numerical and experimental beam models. Damage has been modeled by reducing the flexural rigidity in some predefined beam sections. The effects of various factors such as measurement grid density, damage severity and damage position are investigated.
Findings
The results of both numerical and experimental case studies have been promising. The method could determine the damage location in all cases. The efficiency of method gets better when damage is located far from inflation points of the corresponding mode. In such cases, utilizing higher modes can make up the efficiency.
Research limitations/implications
Since the present research is the first investigation of MEMD in damage localization, just one-dimensional structures have been studied. Extending the method to more complicated geometries needs further attempt.
Originality/value
Although a number of relevant studies have been carried out based on EMD, up to the author’s best knowledge, this is the first attempt to structural damage localization using MEMD.
Details
Keywords
Weiwei Yue, Yuwei Cao, Shuqi Xie, Kang Ning Cheng, Yue Ding, Cong Liu, Yan Jing Ding, Xiaofeng Zhu, Huanqing Liu and Muhammad Shafi
This study aims to improve detection efficiency of fluorescence biosensor or a graphene field-effect transistor biosensor. Graphene field-effect transistor biosensing and…
Abstract
Purpose
This study aims to improve detection efficiency of fluorescence biosensor or a graphene field-effect transistor biosensor. Graphene field-effect transistor biosensing and fluorescent biosensing were integrated and combined with magnetic nanoparticles to construct a multi-sensor integrated microfluidic biochip for detecting single-stranded DNA. Multi-sensor integrated biochip demonstrated higher detection reliability for a single target and could simultaneously detect different targets.
Design/methodology/approach
In this study, the authors integrated graphene field-effect transistor biosensing and fluorescent biosensing, combined with magnetic nanoparticles, to fabricate a multi-sensor integrated microfluidic biochip for the detection of single-stranded deoxyribonucleic acid (DNA). Graphene films synthesized through chemical vapor deposition were transferred onto a glass substrate featuring two indium tin oxide electrodes, thus establishing conductive channels for the graphene field-effect transistor. Using π-π stacking, 1-pyrenebutanoic acid succinimidyl ester was immobilized onto the graphene film to serve as a medium for anchoring the probe aptamer. The fluorophore-labeled target DNA subsequently underwent hybridization with the probe aptamer, thereby forming a fluorescence detection channel.
Findings
This paper presents a novel approach using three channels of light, electricity and magnetism for the detection of single-stranded DNA, accompanied by the design of a microfluidic detection platform integrating biosensor chips. Remarkably, the detection limit achieved is 10 pm, with an impressively low relative standard deviation of 1.007%.
Originality/value
By detecting target DNA, the photo-electro-magnetic multi-sensor graphene field-effect transistor biosensor not only enhances the reliability and efficiency of detection but also exhibits additional advantages such as compact size, affordability, portability and straightforward automation. Real-time display of detection outcomes on the host facilitates a deeper comprehension of biochemical reaction dynamics. Moreover, besides detecting the same target, the sensor can also identify diverse targets, primarily leveraging the penetrative and noninvasive nature of light.
Details
Keywords
Cong Li, YunFeng Xie, Gang Wang, XianFeng Zeng and Hui Jing
This paper studies the lateral stability regulation of intelligent electric vehicle (EV) based on model predictive control (MPC) algorithm.
Abstract
Purpose
This paper studies the lateral stability regulation of intelligent electric vehicle (EV) based on model predictive control (MPC) algorithm.
Design/methodology/approach
Firstly, the bicycle model is adopted in the system modelling process. To improve the accuracy, the lateral stiffness of front and rear tire is estimated using the real-time yaw rate acceleration and lateral acceleration of the vehicle based on the vehicle dynamics. Then the constraint of input and output in the model predictive controller is designed. Soft constraints on the lateral speed of the vehicle are designed to guarantee the solved persistent feasibility and enforce the vehicle’s sideslip angle within a safety range.
Findings
The simulation results show that the proposed lateral stability controller based on the MPC algorithm can improve the handling and stability performance of the vehicle under complex working conditions.
Originality/value
The MPC schema and the objective function are established. The integrated active front steering/direct yaw moments control strategy is simultaneously adopted in the model. The vehicle’s sideslip angle is chosen as the constraint and is controlled in stable range. The online estimation of tire stiffness is performed. The vehicle’s lateral acceleration and the yaw rate acceleration are modelled into the two-degree-of-freedom equation to solve the tire cornering stiffness in real time. This can ensure the accuracy of model.
Details