Search results

1 – 10 of 14
Article
Publication date: 9 January 2024

Jian Kang, Libei Zhong, Bin Hao, Yuelong Su, Yitao Zhao, Xianfeng Yan and Shuanghui Hao

Most of the linear encoders are based on optics. The accuracy and reliability of these encoders are greatly reduced in polluted and noisy environments. Moreover, these encoders…

Abstract

Purpose

Most of the linear encoders are based on optics. The accuracy and reliability of these encoders are greatly reduced in polluted and noisy environments. Moreover, these encoders have a complex structure and large sensor volume and are thus not suited to small application scenarios and do not have universality. This paper aims to present a new absolute magnetic linear encoder, which has a simple structure, small size and wide application range.

Design/methodology/approach

The effect of swing error is analyzed for the sensor structural arrangement. A double-threshold interval algorithm is then proposed to synthesize multiple interval electrical angles into absolute angles and convert them into actual displacement distances.

Findings

The final linear encoder measurement range is 15.57 mm, and the resolution reaches ± 2 µm. The effectiveness of the algorithm is demonstrated experimentally.

Originality/value

The linear encoder has good robustness, and high measurement accuracy, which is suitable for industrial production. The linear encoder has been mass-produced and used in an electric power-assisted braking system.

Details

Sensor Review, vol. 44 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 16 October 2018

Lina Si, Yan Pan, Xiaoqing Zhang, Jie Wang, Jia Yao, Yanjie Wang, Fengbin Liu and Feng He

This paper aims to clarify the effects of metallic nanoparticles (NPs) additives and room temperature ionic liquids (ILs) on the tribological performance of electric contacts.

Abstract

Purpose

This paper aims to clarify the effects of metallic nanoparticles (NPs) additives and room temperature ionic liquids (ILs) on the tribological performance of electric contacts.

Design/methodology/approach

Tribological properties of copper (Cu) and silver (Ag) NPs as lubricant additives in different lubricants of ILs or polyalphaolefin (PAO) oils under applied electric currents were investigated. After tribological tests, morphologies of worn surfaces were observed; meanwhile, lubrication and anti-wear properties were analyzed.

Findings

The mixture solution of the IL and Cu NPs showed desirable lubrication and anti-wear properties due to the reduction of electrocorrosion and the enhancement of rolling effects of particles in the contact region. The anti-wear performance of Cu NPs is better than that of Ag NPs due to the difference in the particle size. The PAO oil with the Cu NPs additives showed poor lubrication properties due to the low solubility of the particles in the oil. When the direction of applied current was changed, the friction of the lubricant with better conductivity was more stable in the variation trend.

Originality/value

This paper begins with a study of tribological properties of Cu and Ag NPs as lubricant additives in different lubricants of IL or PAO oils under applied electric currents. The authors then propose several methods and possible solutions which could be implemented to improve the tribological performance of electric contacts.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 May 2011

Dan Luo and Ronghua Ju

The purpose of the paper is to examine China's county‐level fiscal difficulties. A large portion of China's counties (county‐level cities) have to run with the shortage of…

862

Abstract

Purpose

The purpose of the paper is to examine China's county‐level fiscal difficulties. A large portion of China's counties (county‐level cities) have to run with the shortage of financial resources and huge government debt. To make a suitable policy to solve this problem is a top priority.

Design/methodology/approach

Using the first‐hand survey data, the paper compares nine sample counties whose economic development level is different, sums up the difficulties county‐level governments are facing and explores countermeasures from qualitative and quantitative approaches.

Findings

By studying the survey data of nine sample counties (cities), it is found that county‐level finance is facing the following problems: low‐level fiscal revenue, high debt risk and large gap of fiscal revenue between different counties (cities). Based on these findings, the paper provides suggestions such as ensuring that the county‐level government has sufficient fiscal resources and improving the transfer payment system.

Originality/value

Data from three well‐developed counties (county‐level cities), three middle‐income counties (county‐level cities) and three backward counties made the paper's findings more comprehensive and realistic and suggestions more practical.

Details

China Agricultural Economic Review, vol. 3 no. 2
Type: Research Article
ISSN: 1756-137X

Keywords

Article
Publication date: 6 June 2019

Yanlan Mei, Ping Gui, Xianfeng Luo, Benbu Liang, Liuliu Fu and Xianrong Zheng

The purpose of this paper is to take advantage of Internet of Things (IoT) for intelligent route programming of crowd emergency evacuation in metro station. It is a novel approach…

Abstract

Purpose

The purpose of this paper is to take advantage of Internet of Things (IoT) for intelligent route programming of crowd emergency evacuation in metro station. It is a novel approach to ensure the crowd safety and reduce the casualties in the emergency context. An evacuation route programming model is constructed to select a suitable evacuation route and support the emergency decision maker of metro station.

Design/methodology/approach

The IoT technology is employed to collect and screen information, and to construct an expert decision model to support the metro station manager to make decision. As a feasible way to solve the multiple criteria decision-making problem, an improved multi-attributive border approximation area comparison (MABAC) approach is introduced.

Findings

The case study indicates that the model provides valuable suggestions for evacuation route programming and offers practical support for the design of an evacuation route guidance system. Moreover, IoT plays an important role in the process of intelligent route programming of crowd emergency evacuation in metro station. A library has similar structure and crowd characteristics of a metro station, thus the intelligent route programming approach can be applied to the library crowd evacuation.

Originality/value

The highlights of this paper are listed as followings: the accuracy and accessibility of the metro station’s real-time information are improved by integrating IoT technology with the intelligent route programming of crowd emergency evacuation. An improved MABAC approach is introduced to the expert support model. It promotes the applicability and reliability of decision making for emergency evacuation route selection in metro station. It is a novel way to combine the decision-making methods with practice.

Article
Publication date: 11 January 2022

Weishi Chen, Yifeng Huang, Xianfeng Lu and Jie Zhang

This paper aims to review the critical technology development of avian radar system at airports.

Abstract

Purpose

This paper aims to review the critical technology development of avian radar system at airports.

Design/methodology/approach

After the origin of avian radar technology is discussed, the target characteristics of flying birds are analyzed, including the target echo amplitude, flight speed, flight height, trajectory and micro-Doppler. Four typical airport avian radar systems of Merlin, Accipiter, Robin and CAST are introduced. The performance of different modules such as antenna, target detection and tracking, target recognition and classification, analysis of bird information together determines the detection ability of avian radar. The performances and key technologies of the ubiquitous avian radar are summarized and compared with other systems, and their applications, deployment modes, as well as their advantages and disadvantages are introduced and analyzed.

Findings

The ubiquitous avian radar achieves the long-time integration of target echoes, which greatly improves detection and classification ability of the targets of birds or drones, even under strong background clutter at airport. In addition, based on the big data of bird situation accumulated by avian radar, the rules of bird activity around the airport can be mined to guide the bird avoidance work.

Originality/value

This paper presented a novel avian radar system based on ubiquitous digital radar technology. The authors’ experience has confirmed that this system can be effective for airport bird strike prevention and management. In the future, the avian radar system will see continued improvement in both software and hardware, as the system is designed to be easily extensible.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 25 January 2019

Mehdi Salehi and Mansour Azami

The purpose of this paper is to develop a new structural damage detection technique based on multi-channel empirical mode decomposition (MEMD) of vibrational response data.

Abstract

Purpose

The purpose of this paper is to develop a new structural damage detection technique based on multi-channel empirical mode decomposition (MEMD) of vibrational response data.

Design/methodology/approach

Empirical mode decomposition (EMD) is an empirical data-based signal decomposition method which has been applied in many engineering problems. Utilizing classical EMD to reveal the damage-indicating features of structural vibration response encounters some difficulties due to the inconsistency of modes obtained from different data channels. To overcome this problem, MEMD has been employed. To this end, MEMD algorithm has been adopted to impulse response vector of measured DOFs. The proposed method has been carried out concerning both numerical and experimental beam models. Damage has been modeled by reducing the flexural rigidity in some predefined beam sections. The effects of various factors such as measurement grid density, damage severity and damage position are investigated.

Findings

The results of both numerical and experimental case studies have been promising. The method could determine the damage location in all cases. The efficiency of method gets better when damage is located far from inflation points of the corresponding mode. In such cases, utilizing higher modes can make up the efficiency.

Research limitations/implications

Since the present research is the first investigation of MEMD in damage localization, just one-dimensional structures have been studied. Extending the method to more complicated geometries needs further attempt.

Originality/value

Although a number of relevant studies have been carried out based on EMD, up to the author’s best knowledge, this is the first attempt to structural damage localization using MEMD.

Details

International Journal of Structural Integrity, vol. 10 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 16 September 2024

Weiwei Yue, Yuwei Cao, Shuqi Xie, Kang Ning Cheng, Yue Ding, Cong Liu, Yan Jing Ding, Xiaofeng Zhu, Huanqing Liu and Muhammad Shafi

This study aims to improve detection efficiency of fluorescence biosensor or a graphene field-effect transistor biosensor. Graphene field-effect transistor biosensing and…

Abstract

Purpose

This study aims to improve detection efficiency of fluorescence biosensor or a graphene field-effect transistor biosensor. Graphene field-effect transistor biosensing and fluorescent biosensing were integrated and combined with magnetic nanoparticles to construct a multi-sensor integrated microfluidic biochip for detecting single-stranded DNA. Multi-sensor integrated biochip demonstrated higher detection reliability for a single target and could simultaneously detect different targets.

Design/methodology/approach

In this study, the authors integrated graphene field-effect transistor biosensing and fluorescent biosensing, combined with magnetic nanoparticles, to fabricate a multi-sensor integrated microfluidic biochip for the detection of single-stranded deoxyribonucleic acid (DNA). Graphene films synthesized through chemical vapor deposition were transferred onto a glass substrate featuring two indium tin oxide electrodes, thus establishing conductive channels for the graphene field-effect transistor. Using π-π stacking, 1-pyrenebutanoic acid succinimidyl ester was immobilized onto the graphene film to serve as a medium for anchoring the probe aptamer. The fluorophore-labeled target DNA subsequently underwent hybridization with the probe aptamer, thereby forming a fluorescence detection channel.

Findings

This paper presents a novel approach using three channels of light, electricity and magnetism for the detection of single-stranded DNA, accompanied by the design of a microfluidic detection platform integrating biosensor chips. Remarkably, the detection limit achieved is 10 pm, with an impressively low relative standard deviation of 1.007%.

Originality/value

By detecting target DNA, the photo-electro-magnetic multi-sensor graphene field-effect transistor biosensor not only enhances the reliability and efficiency of detection but also exhibits additional advantages such as compact size, affordability, portability and straightforward automation. Real-time display of detection outcomes on the host facilitates a deeper comprehension of biochemical reaction dynamics. Moreover, besides detecting the same target, the sensor can also identify diverse targets, primarily leveraging the penetrative and noninvasive nature of light.

Details

Sensor Review, vol. 44 no. 6
Type: Research Article
ISSN: 0260-2288

Keywords

Abstract

Details

Online Information Review, vol. 40 no. 1
Type: Research Article
ISSN: 1468-4527

Open Access
Article
Publication date: 25 October 2021

Cong Li, YunFeng Xie, Gang Wang, XianFeng Zeng and Hui Jing

This paper studies the lateral stability regulation of intelligent electric vehicle (EV) based on model predictive control (MPC) algorithm.

1142

Abstract

Purpose

This paper studies the lateral stability regulation of intelligent electric vehicle (EV) based on model predictive control (MPC) algorithm.

Design/methodology/approach

Firstly, the bicycle model is adopted in the system modelling process. To improve the accuracy, the lateral stiffness of front and rear tire is estimated using the real-time yaw rate acceleration and lateral acceleration of the vehicle based on the vehicle dynamics. Then the constraint of input and output in the model predictive controller is designed. Soft constraints on the lateral speed of the vehicle are designed to guarantee the solved persistent feasibility and enforce the vehicle’s sideslip angle within a safety range.

Findings

The simulation results show that the proposed lateral stability controller based on the MPC algorithm can improve the handling and stability performance of the vehicle under complex working conditions.

Originality/value

The MPC schema and the objective function are established. The integrated active front steering/direct yaw moments control strategy is simultaneously adopted in the model. The vehicle’s sideslip angle is chosen as the constraint and is controlled in stable range. The online estimation of tire stiffness is performed. The vehicle’s lateral acceleration and the yaw rate acceleration are modelled into the two-degree-of-freedom equation to solve the tire cornering stiffness in real time. This can ensure the accuracy of model.

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Abstract

Details

Mate Selection in China: Causes and Consequences in the Search for a Spouse
Type: Book
ISBN: 978-1-78769-331-9

1 – 10 of 14