Search results

1 – 10 of over 26000
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 7 November 2023

Shun-Peng Zhu, Xiaopeng Niu, Behrooz Keshtegar, Changqi Luo and Mansour Bagheri

The multisource uncertainties, including material dispersion, load fluctuation and geometrical tolerance, have crucial effects on fatigue performance of turbine bladed disks. In…

190

Abstract

Purpose

The multisource uncertainties, including material dispersion, load fluctuation and geometrical tolerance, have crucial effects on fatigue performance of turbine bladed disks. In view of the aim of this paper, it is essential to develop an advanced approach to efficiently quantify their influences and evaluate the fatigue life of turbine bladed disks.

Design/methodology/approach

In this study, a novel combined machine learning strategy is performed to fatigue assessment of turbine bladed disks. Proposed model consists of two modeling phases in terms of response surface method (RSM) and support vector regression (SVR), namely RSM-SVR. Two different input sets obtained from basic variables were used as the inputs of RSM, then the predicted results by RSM in first phase is used as inputs of SVR model by using a group data-handling strategy. By this way, the nonlinear flexibility of SVR inputs is improved and RSM-SVR model presents the high-tendency and efficiency characteristics.

Findings

The accuracy and tendency of the RSM-SVR model, applied to the fatigue life estimation of turbine bladed disks, are validated. The results indicate that the proposed model is capable of accurately simulating the nonlinear response of turbine bladed disks under multisource uncertainties, and SVR-RSM model provides an accurate prediction strategy compared to RSM and SVR for fatigue analysis of complex structures.

Originality/value

The results indicate that the proposed model is capable of accurately simulate the nonlinear response of turbine bladed disks under multisource uncertainties, and SVR-RSM model provides an accurate prediction compared to RSM and SVRE for fatigue analysis of turbine bladed disk.

Details

International Journal of Structural Integrity, vol. 14 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Access Restricted. View access options
Article
Publication date: 10 January 2025

Vu Hong Son Pham and Duy Hieu Pham

This study aims to optimize the construction site layout planning (CSLP) problem, with a focus on prefabricated projects. It proposes the use of the oMOAHA algorithm, an enhanced…

56

Abstract

Purpose

This study aims to optimize the construction site layout planning (CSLP) problem, with a focus on prefabricated projects. It proposes the use of the oMOAHA algorithm, an enhanced version of the multi-objective artificial hummingbird algorithm (MOAHA), to address challenges related to search space exploration and local optimization in CSLP.

Design/methodology/approach

The study integrates three techniques – opposition-based learning (OBL), quasi-opposition and quasi-reflection – into the initialization phase of the MOAHA algorithm, creating the oMOAHA variant. This model is applied to all three types of CSLP problems – pre-determined location, grid system and continuous space – to evaluate its effectiveness. Six objective functions (three related to cost, two to safety and one to tower crane efficiency) and four site-related constraints are considered through three case studies taken from previous research and one real project involving prefabricated steel structures.

Findings

The oMOAHA algorithm demonstrates superior performance compared to previous models, consistently outperforming traditional approaches in CSLP optimization for prefabricated projects. In the real case study, the proposed model exceeded the actual project plan by 28–43%, indicating its potential to significantly improve both solution quality and project outcomes.

Originality/value

This study is the first to apply an optimization model to all three types of CSLP problems – pre-determined location, grid system and continuous space – within a unified framework. The integration of advanced techniques into the MOAHA algorithm and the model’s successful application in a real prefabricated project underscore its high applicability and effectiveness in modern construction management.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Access Restricted. View access options
Article
Publication date: 1 August 2019

Changpeng Chen, Jie Yin, Haihong Zhu, Xiaoyan Zeng, Guoqing Wang, Linda Ke, Junjie Zhu and Shijie Chang

High residual stress caused by the high temperature gradient brings undesired effects such as shrinkage and cracking in selective laser melting (SLM). The purpose of this study is…

1006

Abstract

Purpose

High residual stress caused by the high temperature gradient brings undesired effects such as shrinkage and cracking in selective laser melting (SLM). The purpose of this study is to predict the residual stress distribution and the effect of process parameters on the residual stress of selective laser melted (SLMed) Inconel 718 thin-walled part.

Design/methodology/approach

A three-dimensional (3D) indirect sequentially coupled thermal–mechanical finite element model was developed to predict the residual stress distribution of SLMed Inconel 718 thin-walled part. The material properties dependent on temperature were taken into account in both thermal and mechanical analyses, and the thermal elastic–plastic behavior of the material was also considered.

Findings

The residual stress changes from compressive stress to tensile stress along the deposition direction, and the residual stress increases with the deposition height. The maximum stress occurs at both ends of the interface between the part and substrate, while the second largest stress occurs near the top center of the part. The residual stress increases with the laser power, with the maximum equivalent stress increasing by 21.79 per cent as the laser power increases from 250 to 450 W. The residual stress decreases with an increase in scan speed with a reduction in the maximum equivalent stress of 13.67 per cent, as the scan speed increases from 500 to 1,000 mm/s. The residual stress decreases with an increase in layer thickness, and the maximum equivalent stress reduces by 33.12 per cent as the layer thickness increases from 20 to 60µm.

Originality/value

The residual stress distribution and effect of process parameters on the residual stress of SLMed Inconel 718 thin-walled part are investigated in detail. This study provides a better understanding of the residual stress in SLM and constructive guidance for process parameters optimization.

Details

Rapid Prototyping Journal, vol. 25 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 6 September 2018

Dang Luo, Lili Ye, Yanli Zhai, Hanyu Zhu and Qicun Qian

Hazard assessment on drought disaster is of great significance for improving drought risk management. Due to the complexity and uncertainty of the drought disaster, the index…

148

Abstract

Purpose

Hazard assessment on drought disaster is of great significance for improving drought risk management. Due to the complexity and uncertainty of the drought disaster, the index values have some grey multi-source heterogeneous characteristics. The purpose of this paper is to construct a grey projection incidence model (GPIM) to evaluate the hazard of the drought disaster characterised by the grey heterogeneity information.

Design/methodology/approach

First, the index system of the drought hazard risk is established based on the formation mechanism of the drought disaster. Then, the GPIM for the heterogeneous panel data is constructed to assess drought hazard of five cities in Henan Province. Subsequently, based on the assessment results, the grey clustering model is employed for the regional division.

Findings

The findings demonstrate that five cities in central Henan Province are divided into three categories, which correspond to three different risk grades, respectively. With respect to different drought risk areas, corresponding countermeasures and suggestions are proposed.

Practical implications

This paper provides a practical and effective new method for the hazard assessment on drought disaster. Meanwhile, these countermeasures and suggestions can help policy makers to improve the efficiency of drought resistance work and reduce the losses caused by drought disasters in Henan Province.

Originality/value

This paper proposes a new GPIM which resolves the assessment problems of the uncertain systems with grey heterogeneous information, such as real numbers, interval grey numbers and three-parameter interval grey numbers. It not only expands the application scope of the grey incidence model, but also enriches the research of panel data.

Details

Grey Systems: Theory and Application, vol. 8 no. 4
Type: Research Article
ISSN: 2043-9377

Keywords

Access Restricted. View access options
Book part
Publication date: 19 November 2014

Daniel Felix Ahelegbey and Paolo Giudici

The latest financial crisis has stressed the need of understanding the world financial system as a network of interconnected institutions, where financial linkages play a…

Abstract

The latest financial crisis has stressed the need of understanding the world financial system as a network of interconnected institutions, where financial linkages play a fundamental role in the spread of systemic risks. In this paper we propose to enrich the topological perspective of network models with a more structured statistical framework, that of Bayesian Gaussian graphical models. From a statistical viewpoint, we propose a new class of hierarchical Bayesian graphical models that can split correlations between institutions into country specific and idiosyncratic ones, in a way that parallels the decomposition of returns in the well-known Capital Asset Pricing Model. From a financial economics viewpoint, we suggest a way to model systemic risk that can explicitly take into account frictions between different financial markets, particularly suited to study the ongoing banking union process in Europe. From a computational viewpoint, we develop a novel Markov chain Monte Carlo algorithm based on Bayes factor thresholding.

Access Restricted. View access options
Article
Publication date: 12 July 2022

Guoqiang Zhu, He Li, Huan Zhang, Sen Wang and Xiuyu Zhang

The purpose of this study is to propose an adaptive fault-tolerant control approach based on output feedback for a class of quadrotor unmanned aerial vehicles system. In the event…

161

Abstract

Purpose

The purpose of this study is to propose an adaptive fault-tolerant control approach based on output feedback for a class of quadrotor unmanned aerial vehicles system. In the event of a controlled actuator failure, a stable flying of the aircraft can be achieved by selecting an appropriate sliding mode surface.

Design/methodology/approach

Aiming at the actuator failure of quadrotor aircraft during flight in the controllable range, a dynamic surface sliding mode passive fault-tolerant controller based on output feedback is designed based on the strong robustness of sliding mode method. Due to the unknown nonlinearity dynamics and parameter uncertainties in the system, a nonlinear observer is used to estimate them online.

Findings

The stability of the suggested algorithm is established using appropriate Lyapunov functions, and the performance of the proposed control approach is demonstrated using hardware-in-the-loop simulation.

Originality/value

An error performance function is introduced into the controller to ensure the convergence speed and accuracy of errors are within the predetermined range. By using the norm estimation method, there is only one parameter that needs to be updated in each step of the control process, which considerably minimizes the calculation burden. Finally, the validity of the proposed control scheme is verified on the hardware-in-the-loop simulation, and the results show that the proposed control method has achieved the desired results.

Details

Assembly Automation, vol. 42 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Access Restricted. View access options
Article
Publication date: 3 March 2022

Changpeng Chen, Zhongxu Xiao, Gang Xue, Hailong Liao and Haihong Zhu

High temperature gradient induces high residual stress, producing an important effect on the part manufacturing during laser powder bed fusion (LPBF). The purpose of this study is…

248

Abstract

Purpose

High temperature gradient induces high residual stress, producing an important effect on the part manufacturing during laser powder bed fusion (LPBF). The purpose of this study is to investigate the effect of the molten pool mode on the thermal stress of Ti-6Al-4V alloy during different deposition processes.

Design/methodology/approach

A coupled thermal-mechanical finite element model was built. The developed model was validated by comparing the numerical results with the experimental data in the maximum molten pool temperature, the molten pool dimension and the residual stress described in the previous work.

Findings

For the single-track process, the keyhole mode caused an increase in both the maximum stress and the high-stress area compared with the conduction mode. For the multitrack process, a lower tensile stress around the scanning track and a higher compressive stress below the scanning track were found in the keyhole mode. For the multilayer process, the stress along the scanning direction at the middle of the part changed from tensile stress to compressive stress with the increase in the deposition layer number. As the powder layer number increased, the stress along the scanning direction near the top surface of the part decreased while the stress along the deposition direction obviously increased, indicating that the stress along the deposition direction became the dominant stress. The keyhole mode can reduce the residual stress near the top of the part, and the conduction mode was more likely to produce a low residual stress near the bottom of the part.

Originality/value

The results provide a systematic understanding of thermal stress during the LPBF process.

Details

Rapid Prototyping Journal, vol. 28 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 1 December 2011

Jia Beisi and Jiang Yingying

Although an important facet of modernist architecture in which function plays a prominent role, building flexibility is not entirely a new concept. Its relevance transcends…

65

Abstract

Although an important facet of modernist architecture in which function plays a prominent role, building flexibility is not entirely a new concept. Its relevance transcends generations, allowing space and structure to evolve through time. This paper investigates the relationship among main building structures, infill elements, and space by studying examples in ancient Chinese architecture. It reveals the role of building owners, users, and craftsmen from a survey of historical documentation. In studying these examples, it is concluded that craftsmen in ancient China were involved not only during the construction phase but throughout the period of use as well. Thus, in select cases, the relationship between craftsmen and owners or users had been preserved for generations. Finally, this paper suggests potential strategies for the building industry and technology in the move towards sustainable development.

Details

Open House International, vol. 36 no. 4
Type: Research Article
ISSN: 0168-2601

Keywords

Available. Content available
Book part
Publication date: 28 June 2023

Xinru Liu and Honggen Xiao

Free Access. Free Access

Abstract

Details

Poverty and Prosperity
Type: Book
ISBN: 978-1-80117-987-4

Access Restricted. View access options
Article
Publication date: 13 November 2017

Chandra B. Khatri and Satish C. Sharma

The aim of the present paper is to study the combined influence of textured surface and micropolar lubricant behaviour on the performance of two-lobe hole-entry hybrid journal…

209

Abstract

Purpose

The aim of the present paper is to study the combined influence of textured surface and micropolar lubricant behaviour on the performance of two-lobe hole-entry hybrid journal bearing system. The bearing performance parameters of the textured circular/two-lobe hole-entry hybrid journal bearing system have been computed against the constant vertical external load supported by the bearing.

Design/methodology/approach

In this work, Eringen’s micropolar fluid theory has been used to derive the governing Reynolds equation. The consequent solution of the governing Reynolds equation has been obtained by using finite element method (FEM) numerical technique.

Findings

The present study indicates that the use of the textured surface, two-lobe profile of bearing and micropolar lubricant, significantly enhances the bearing performance as compared to non-textured circular journal bearing.

Originality/value

The present study concerning the influence of surface texturing on the behaviour of the two-lobe hole-entry hybrid journal bearing lubricated with micropolar lubricant is original. The theoretically simulated results of the present study will be useful to design an efficient journal bearing system.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 26000
Per page
102050