Search results

1 – 4 of 4
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 4 July 2018

Cheng Chen, Xiaogang Wang, Wutao Qin and Naigang Cui

A novel vision-based relative navigation system (VBRNS) plays an important role in aeronautics and astronautics fields, and the filter is the core of VBRNS. However, most of the…

123

Abstract

Purpose

A novel vision-based relative navigation system (VBRNS) plays an important role in aeronautics and astronautics fields, and the filter is the core of VBRNS. However, most of the existing filtering algorithms used in VBRNS are derived based on Gaussian assumption and disregard the non-Gaussianity of VBRNS. Therefore, a novel robust filtering named as cubature Huber-based filtering (CHF) is proposed and applied to VBRNS to improve the navigation accuracy in non-Gaussian noise case.

Design/methodology/approach

Under the Bayesian filter framework, the third-degree cubature rule is used to compute the cubature points which are propagated through state equation, and then the predicted mean and the associated covariance are taken. A combined minimum l1 and l2-norm estimation method referred as Huber’s criterion is used to design the measurement update. After that, the vision-based relative navigation model is presented and the CHF is used to integrate the line-of-sight measurements from vision camera with inertial measurement of the follower to estimate the precise relative position, velocity and attitude between two unmanned aerial vehicles. During the design of relative navigation filter, the quaternions are used to represent the attitude and the generalized Rodrigues parameters are used to represent the attitude error. The simulation is conducted to demonstrate the effectiveness of the algorithm.

Findings

By this means, the VBRNS could perform better than traditional VBRNS whose filter is designed by Gaussian filtering algorithms. And the simulation results demonstrate that the CHF could exhibit robustness when the system is non-Gaussian. Moreover, the CHF has more accurate estimation and faster rate of convergence than extended Kalman Filtering (EKF) in face of inaccurate initial conditions.

Originality/value

A novel robust nonlinear filtering algorithm named as CHF is proposed and applied to VBRNS based on cubature Kalman filtering (CKF) and Huber’s technique. The CHF could adapt to the non-Gaussian system effectively and perform better than traditional Gaussian filtering such as EKF.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Access Restricted. View access options
Article
Publication date: 3 October 2016

Xiaogang Wang, Wutao Qin, Yuliang Bai and Naigang Cui

Penetrator plays an important role in the exploration of Moon and Mars. The navigation method is a key technology during the development of penetrator. To meet the high accuracy…

306

Abstract

Purpose

Penetrator plays an important role in the exploration of Moon and Mars. The navigation method is a key technology during the development of penetrator. To meet the high accuracy requirements of Moon penetrator, this paper aims to propose two kinds of navigation systems.

Design/methodology/approach

The line of sight of vision sensor between the penetrator and Moon orbiter could be utilized as the measurement during the navigation system design. However, the analysis of observability shows that the navigation system cannot estimate the position and velocity of penetrator, when the line of sight measurement is the only resource of information. Therefore, the Doppler measurement due to the relative motion between penetrator and the orbiter is used as the supplement. The other option is the relative range measurement between penetrator and the orbiter. The sigma-point Kalman Filtering is implemented to fuse the information from the vision sensor and Doppler or rangefinder. The observability of two navigation system is analyzed.

Findings

The sigma-point Kalman filtering could be used based on vision sensor and Doppler radar or laser rangefinder to give an accurate estimation of Moon penetrator position and velocity without increasing the payload of Moon penetrator or decreasing the estimation accuracy. However, the simulation result shows that the last method is better. The observability analysis also proves this conclusion.

Practical implications

Two navigation systems are proposed, and the simulations show that both systems can provide accurate estimation of states of penetrator.

Originality/value

Two navigation methods are proposed, and the observability of these navigation systems is analyzed. The sigma-point Kalman filtering is first introduced to the vision-based navigation system for Moon penetrator to provide precision navigation during the descent phase of Moon penetrator.

Details

Aircraft Engineering and Aerospace Technology, vol. 88 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Access Restricted. View access options
Article
Publication date: 5 March 2018

Xiaogang Wang, Wutao Qin, Yu Wang and Naigang Cui

This paper aims to propose Bayesian filtering based on solving the Fokker–Planck equation, to improve the accuracy of filtering in non-Gauss case. Nonlinear filtering plays an…

185

Abstract

Purpose

This paper aims to propose Bayesian filtering based on solving the Fokker–Planck equation, to improve the accuracy of filtering in non-Gauss case. Nonlinear filtering plays an important role in many science and engineering fields for estimating the state of dynamic system, but the existing filtering algorithms are mainly used for solving the problem of Gauss system.

Design/methodology/approach

Under the Bayesian framework, the time update of this filtering is based on solving Fokker–Planck equation, while the measurement update uses the Bayes formula directly. Therefore, this novel algorithm can be applied to nonlinear, non-Gaussian estimation. To reduce the computational complexity due to standard meshing, an adaptive meshing algorithm proposed which includes the coarse meshing, significant domain determination that is generated using extended Kalman filtering and Chebyshev’s inequality theorem, and value assignment for significant domain. Simulations are conducted on a reentry body tracking problem to demonstrate the effectiveness of this novel algorithm.

Findings

In this way, finer grid points can be placed in the regions with high conditional probability density, while the grid points with low conditional probability density can be neglected. The simulation results indicate that the novel algorithm can reduce the computational burden significantly compared to the standard meshing, while achieving similar accuracy.

Practical implications

A novel Bayesian filtering based on solving the Fokker–Planck equation using adaptive meshing is proposed, and the simulations show that algorithm can reduce the computational burden significantly compared to the standard meshing, while achieving similar accuracy.

Originality/value

A novel nonlinear filtering based on solving the Fokker–Planck equation is proposed. The novel algorithm is suitable for non-Gauss system, and can achieve similar accuracy compared to the standard meshing with the significant reduction of computational burden.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Access Restricted. View access options
Article
Publication date: 3 January 2017

Xiaogang Wang, Wutao Qin, Yuliang Bai and Naigang Cui

The time delay would occurs when the measurements of multiple unmanned aerial vehicles (UAVs) are transmitted to the date processing center during cooperative target localization…

244

Abstract

Purpose

The time delay would occurs when the measurements of multiple unmanned aerial vehicles (UAVs) are transmitted to the date processing center during cooperative target localization. This problem is often named as the out-of-sequence measurement (OOSM) problem. This paper aims to present a nonlinear filtering based on solving the Fokker–Planck equation to address the issue of OOSM.

Design/methodology/approach

According to the arrival time of measurement, the proposed nonlinear filtering can be divided into two parts. The non-delay measurement would be fused in the first part, in which the Fokker–Planck equation is utilized to propagate the conditional probability density function in the forward form. The time delay measurement is fused in the second part, in which the Fokker–Planck is used in the backward form approximately. The Bayes formula is applied in both parts during the measurement update.

Findings

Under the Bayesian filtering framework, this nonlinear filtering is not only suitable for the Gaussian noise assumption but also for the non-Gaussian noise assumption. The nonlinear filtering is applied to the cooperative target localization problem. Simulation results show that the proposed filtering algorithm is superior to the previous Y algorithm.

Practical implications

In this paper, the research shows that a better performance can be obtained by fusing multiple UAV measurements and treating time delay in measurement with the proposed algorithm.

Originality/value

In this paper, the OOSM problem is settled based on solving the Fokker–Planck equation. Generally, the Fokker–Planck equation can be used to predict the probability density forward in time. However, to associate the current state with the state related to OOSM, it would be used to propagate the probability density backward either.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 4 of 4
Per page
102050