Xingwen Wu, Zhenxian Zhang, Wubin Cai, Ningrui Yang, Xuesong Jin, Ping Wang, Zefeng Wen, Maoru Chi, Shuling Liang and Yunhua Huang
This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.
Abstract
Purpose
This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.
Design/methodology/approach
Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators. Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration. This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration, including a brief introduction of short-pitch irregularities, associated high frequency vibration in railway bogie, typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.
Findings
The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms. The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components. The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure, and the fatigue crack usually initiates from the defect of the weld seam. Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities. The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment, and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.
Originality/value
The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.
Details
Keywords
Xun Ma, Wubin Xu, Xueping Zhang and Fuyong Yang
This paper aims to investigate how form error of journal affects oil film characteristics, which are composed of several parameters including the maximum film pressure, film…
Abstract
Purpose
This paper aims to investigate how form error of journal affects oil film characteristics, which are composed of several parameters including the maximum film pressure, film moment, frictional coefficient and carrying-load capacity.
Design/methodology/approach
A new generalized equation based on the small displacement torsor theory is derived, as well as its capability of representing types of form error on the journal, using four specified parameters in a three-dimensional (3D) state. Based on the new generalized equation of form errors, the Reynolds equation is represented and solved numerically using the Swift–Stieber boundary condition.
Findings
The results show that the form errors of journal have significant influence on all oil film characteristics. However, the film moment remains nearly unchanged as film characteristics, especially eccentricity ratio, become large. All film characteristics investigated vary periodically as the form error. More importantly, it is found that the film pressure distribution transforms to an asymmetric shape along the axial direction of the bearing, no longer a symmetric shape in the case of two-dimensional (2D) form errors. It is necessary to substitute the 3D form error model, which takes the variations of the film characteristics in axial direction into account, for the 2D model in the designing stage of journal bearings.
Originality/value
First, the effect of the form error of the journal on the performance of hydrodynamic journal bearings is studied in the view of the film characteristics systematically. Secondly, the new generalized equation of form error, derived by SDT theory, is capable of representing any types of form error on the journal, not only representing one type of form error merely.