Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 4 June 2021

Lixue Zou, Xiwen Liu, Wray Buntine and Yanli Liu

Full text of a document is a rich source of information that can be used to provide meaningful topics. The purpose of this paper is to demonstrate how to use citation context (CC…

409

Abstract

Purpose

Full text of a document is a rich source of information that can be used to provide meaningful topics. The purpose of this paper is to demonstrate how to use citation context (CC) in the full text to identify the cited topics and citing topics efficiently and effectively by employing automatic text analysis algorithms.

Design/methodology/approach

The authors present two novel topic models, Citation-Context-LDA (CC-LDA) and Citation-Context-Reference-LDA (CCRef-LDA). CC is leveraged to extract the citing text from the full text, which makes it possible to discover topics with accuracy. CC-LDA incorporates CC, citing text, and their latent relationship, while CCRef-LDA incorporates CC, citing text, their latent relationship and reference information in CC. Collapsed Gibbs sampling is used to achieve an approximate estimation. The capacity of CC-LDA to simultaneously learn cited topics and citing topics together with their links is investigated. Moreover, a topic influence measure method based on CC-LDA is proposed and applied to create links between the two-level topics. In addition, the capacity of CCRef-LDA to discover topic influential references is also investigated.

Findings

The results indicate CC-LDA and CCRef-LDA achieve improved or comparable performance in terms of both perplexity and symmetric Kullback–Leibler (sKL) divergence. Moreover, CC-LDA is effective in discovering the cited topics and citing topics with topic influence, and CCRef-LDA is able to find the cited topic influential references.

Originality/value

The automatic method provides novel knowledge for cited topics and citing topics discovery. Topic influence learnt by our model can link two-level topics and create a semantic topic network. The method can also use topic specificity as a feature to rank references.

Details

Library Hi Tech, vol. 39 no. 4
Type: Research Article
ISSN: 0737-8831

Keywords

1 – 1 of 1
Per page
102050