Search results
1 – 10 of 16Janusz Borecki, Aneta Araźna, Kamil Janeczek, Jerzy Kalenik, Michał Kalenik, Wojciech Stęplewski and Rafał Tarakowski
Nowadays, using of material properties for monitoring of phenomena occurring in the surrounding environment is very desirable. Taking into account the dynamic development of…
Abstract
Purpose
Nowadays, using of material properties for monitoring of phenomena occurring in the surrounding environment is very desirable. Taking into account the dynamic development of Internet of Things and the technological development of printed electronics, research into the using of printed electronic components for sensor applications can be one of the most prominent directions of searching for new innovative solutions. Among others, it is possible to apply them to produce the strain gauges, as well as for construction of advanced sensors for medical applications. The goal of this paper is to present the possibilities and using different constructions of embedded polymer thick-film resistors as the sensors of tension or strain.
Design/methodology/approach
The investigations were based on the polymer thick-film resistors made of carbon or carbon–silver inks printed on copper pads made on FR-4 material on two sides. The longitudinal samples laminated with resin-coated copper foil material and without lamination were bent on a strength machine. During the tests, the resistors depending on their placement were stretched or compressed. Some of the samples were also tested under high pressure. Under the influence of applied stresses, there was a reversible change in electrical resistance, which was monitored.
Findings
The study showed that the polymer thick-film resistors are characterized by a measurable piezoresistive effect. By analyzing the value of the observed resistance changes, a magnitude of strain or pressure can be worked out. During the bending, the piezoresistive effect depends on the location and orientation of the resistor. After stopping of the mechanical strains, the electrical resistance of the resistive elements does not return exactly to the initial value. This is probably related to the substrate material and the resistive paste composition. The results are very promising and further research will be done.
Originality/value
The results provided information about the piezoresistive effect of polymer thick-film resistors printed on the deformable substrate which could be interesting for engineers involved in printed sensor development dedicated for different fields of application. This phenomenon can be used to manufacturing cheap and uncomplicated sensors to monitor deformation. There are several aspects to be solved, but with the use of new types of resistive pastes and substrates, there is a potential possibility of using such resistors as sensors.
Details
Keywords
Wojciech Stęplewski, Andrzej Dziedzic, Kamil Janeczek, Aneta Araźna, Krzysztof Lipiec, Janusz Borecki and Tomasz Serzysko
The purpose of this paper is to investigate the behavior of embedded passives under changing temperature conditions. Influence of different temperature changes on the basic…
Abstract
Purpose
The purpose of this paper is to investigate the behavior of embedded passives under changing temperature conditions. Influence of different temperature changes on the basic properties of embedded passives was analyzed. The main reason for these investigations was to determine functionality of passives for space application.
Design/methodology/approach
The investigations were based on the thin-film resistors made of Ni-P alloy, thick-film resistors made of carbon or carbon-silver inks, embedded capacitors made of FaradFlex materials and embedded inductor made in various configurations. Prepared samples were examined under the influence of a constant elevated temperature (100, 130 or 160°C) in a long period of time (minimum of 30 h), thermal cycles (from −40 to +85°C) or thermal shocks (from −40 to +105°C or from −40 to +125°C).
Findings
The achieved results revealed that resistance drift became bigger when the samples were treated at a higher constant temperature. At the same time, no significant difference in change in electrical properties for 50 and 100 Ω resistors was noticed. For all the tests, resistance change was below 2 per cent regardless of a value of the tested resistors. Conducted thermal shock studies indicate that thin-film resistors, coils and some thick-film resistors are characterized by minor variations in basic parameters. Some of the inks may show considerable resistance variations with temperature changes. Significant changes were also exhibited by embedded capacitors.
Originality/value
The knowledge about the behavior of the operating parameters of embedded components considering environmental conditions allow for development of more complex systems with integrated printed circuit boards.
Details
Keywords
Wojciech Steplewski, Andrzej Dziedzic, Janusz Borecki and Tomasz Serzysko
The purpose of this paper is to investigate the basic functional parameters of passive embedded components in printed circuit boards (PCBs) under environmental exposures such as…
Abstract
Purpose
The purpose of this paper is to investigate the basic functional parameters of passive embedded components in printed circuit boards (PCBs) under environmental exposures such as thermal-humidity and thermal exposure.
Design/methodology/approach
The investigations were based on the thin-film resistors made of NiP alloy, thick-film resistors made of carbon or carbon–silver inks, embedded capacitors made of FaradFlex materials and embedded inductor made in various configurations. The capacitors and thin- and thick-film resistors were tested in the climatic chamber in conditions of thermal-humidity exposure at 85°C and 85 per cent RH for 500 h. The embedded inductors were tested in two different environmental conditions: thermal-humidity exposure at 60°C and 95 per cent RH, and thermal exposure at 150°C and additionally at the temperature in the range of +25°C to +150°C.
Findings
Studies show that in the case of embedded capacitors, the changes caused by exposure to thermal-humidity are durable and lead to the capacity increase. The embedded thin-film resistors behave in the same manner, whereas the thick-film resistors were the least resistant to the conditions of exposure. Most of the polymer thick-film resistors have been damaged. The changes of coils' properties during aging are small, and what is most important is that, after some time of exposure, their parameters stabilize at a particular level. The changes resulting from the increase in temperature are typically related to the change of material resistance (Cu) of which coils are made, and as such, they cannot be avoided but they can be predicted.
Research limitations/implications
The realized studies allowed determination of the properties of the embedded passive elements with respect to specific environmental exposures. The studies show that embedded resistors can be used interchangeably with chip passive elements. It allows saving the area on the surface of PCB, occupied by these passive elements, for assembly of active elements integrated circuits (ICs) and thus enabling the miniaturization of electronic devices.
Originality/value
The knowledge about the behavior of the operating parameters of embedded components, considering the environmental conditions, allows for development of more complex systems with integrated PCBs.
Details
Keywords
Andrzej Dziedzic, Pawel Osypiuk and Wojciech Steplewski
The paper aims to verify the influence of mechanical factors (longitudinal elongation at constant stretching velocity, constant elongation strain and cyclic compressive and…
Abstract
Purpose
The paper aims to verify the influence of mechanical factors (longitudinal elongation at constant stretching velocity, constant elongation strain and cyclic compressive and tensile stresses) on the electrical properties of thin-film and polymer thick-film resistors on flexible substrates.
Design/methodology/approach
Kapton foil was used as a substrate for all test samples. Designed resistive structures were made with the aid of two polymer thick-film resistive inks or OhmegaPly Ni-P resistive foil. Two different topologies – the horseshoe and triangular – were used. These topologies should have the opposite stability parameters.
Findings
Almost all presented data confirm the influence of the topology of resistors on stability of their electrical properties. The resistive materials applied for test structures also affect the stability under various mechanical exposures.
Originality/value
In general, the largest changes were caused by longitudinal elongation at constant stretching velocity, whereas other tests caused smaller changes of electrical properties. The measurements confirm the influence of topology on stability of electric properties.
Details
Keywords
Kamil Janeczek, Aneta Araźna, Wojciech Stęplewski, Marek Kościelski, Krzysztof Lipiec, Ireneusz Rafalik, Sebastian Karolewski, Dorota Liszewska and Anna Sitek
The purpose of this study is to design and fabricate a simple passive sensor circuitry embedded into a printed circuit board (PCB) and then to examine its properties.
Abstract
Purpose
The purpose of this study is to design and fabricate a simple passive sensor circuitry embedded into a printed circuit board (PCB) and then to examine its properties.
Design/methodology/approach
A passive sensor transponder integrated circuit (IC) working in the high frequency (HF) 13.56 MHz frequency band was selected for this study. A loop antenna was designed to make the reported sensor circuitry readable. Next, the sensor circuitry was fabricated and embedded into a PCB with the proposed technologies. Finally, properties of the embedded structures were examined as well-functional parameters of the sensor circuitries.
Findings
The described investigation results confirmed that the proposed technologies using an epoxy resin or standard materials used for PCB’s production allowed to successfully produce sensors embedded into PCBs. This technology did not have a negative significant impact either on quality of solder joints of the assembled transponder IC or on functional properties of the embedded sensor. Apart from the identification data, the reported sensor can provide information about a selected property of its environment, e.g. temperature when its internal temperature sensitive element is used or other factors with the use of external sensitive elements, such as humidity.
Research limitations/implications
It is planned to carry on the reported investigations to examine other types of sensor circuitries capable of indicating e.g. humidity level and to evaluate influence of the proposed technology on their functional properties.
Practical implications
The reported sensor circuitries can be successfully used in electronic industry in internet of things systems not only to identify monitored electronic devices, but also to control selected parameters of external environment. This creates opportunity to detect device malfunction by detecting local temperature growth or to analyze its environment, which might allow to predict failure of controlled products using radio waves. This advantage seems to be extremely beneficial for applications, such as space, aviation or military, in which embedded sensor systems may lead to enhancing reliability of electronic devices by reacting on occurred failures in a more efficient way.
Originality/value
This study demonstrates valuable information for engineers conducting research on sensor components embedded into PCBs. The reported technologies are quite simple and cost-effective because of the use of standard materials known for PCB’s production or an epoxy resin which could be treated as an additional encapsulant material enhancing mechanical properties of the embedded sensor transponder IC.
Details
Keywords
Wojciech Steplewski, Andrzej Dziedzic, Janusz Borecki, Grazyna Koziol and Tomasz Serzysko
The purpose of this paper is to investigate the influence of parameters of embedded resistive elements manufacturing process as well as the influence of environmental factors on…
Abstract
Purpose
The purpose of this paper is to investigate the influence of parameters of embedded resistive elements manufacturing process as well as the influence of environmental factors on their electrical resistance. The investigations were made in comparison to the similar constructions of discrete chip resistors assembled to standard printed circuit boards (PCBs).
Design/methodology/approach
The investigations were based on the thin-film resistors made of NiP alloy, thick-film resistors made of carbon or carbon-silver inks as well as chip resistors in 0402 and 0603 packages. The polymer thick-film resistive films were screen-printed on the several types finishing materials of contact terminations such as copper, silver, and gold. To determine the sensitivity of embedded resistors versus standard assembled chip resistors on environmental exposure, the climatic chamber was used. The measurements of resistance were carried out periodically during the tests, and after the exposure cycles.
Findings
The results show that the change of electrical resistance of embedded resistors, in dependence of construction and base material, is different and mainly not exceed the range of 3 per cent. The achieved results in reference to thin-film resistors are comparable with results for standard chip resistors. However, the results that were obtained for thick-film resistors with Ag and Ni/Au contacts are similar. It was not found the big differences between resistors with and without conformal coating.
Research limitations/implications
The studies show that embedded resistors can be used interchangeably with chip resistors. It allows to save the area on the surface of PCB, occupied by these passive elements, for assembly of active elements (ICs) and thus enable to miniaturization of electronic devices. But embedding of passive elements into PCB requires to tackle the effect of each forming process steps on the operational properties.
Originality/value
The technique of passive elements embedding into PCB is generally known; however, there are no detailed reports on the impact of individual process steps and environmental conditions on the stability of their electrical resistance. The studies allow to understand the importance of each factor process and the mechanisms of operational properties changes depending on the used materials.
Details
Keywords
Wojciech Stęplewski, Andrzej Dziedzic, Adam Kłossowicz, Paweł Winiarski, Janusz Borecki, Grażyna Kozioł and Tomasz Serzysko
– This paper aims to report the investigations of capacitors and inductors embedded into printed circuit boards (PCBs) designed in various layouts.
Abstract
Purpose
This paper aims to report the investigations of capacitors and inductors embedded into printed circuit boards (PCBs) designed in various layouts.
Design/methodology/approach
The research were focused on the components embedded into four-layer PCBs with different structures of the inner layers. Three special capacitive laminates for manufacturing of thin-film embedded capacitors and several types of coils in the form of a spiral, meander and solenoid are described. In addition, a part of the spiral-type coils was formed with an aperture in the center in which the magnetic core, made of soft magnetic composites’ material was placed to increase the coil inductance.
Findings
Various constructions of embedded capacitors and coils were designed and manufactured. Capacitance and loss tangent of capacitors to determine the repeatability of the production process were determined. Capacitor’s long-term stability analysis was performed by exposing test samples to elevated temperatures (70, 100 or 130°C), realized with the aid of heating plate, for at least 160 h. The temperature characteristics for the capacitance and loss tangent from 15 to 100°C were determined. Also the induction of different designs and layouts coils was determined.
Originality/value
The wide parameters’ characterization of capacitors and coils embedded into PCBs allow the analysis of their properties with regard to their practical application. The promising results of the realized measurements show that the capacitors and induction coils with studied structures can be widely used in the construction of embedded circuits into PCBs (e.g. filters, radio frequency identification systems and generators).
Details
Keywords
Wojciech Steplewski, Andrzej Dziedzic, Janusz Borecki, Grazyna Koziol and Tomasz Serzysko
The purpose of this paper is to investigate the thermal behaviour of thin- and thick-film resistor with different dimensions and contacts embedded into printed circuit board (PCB…
Abstract
Purpose
The purpose of this paper is to investigate the thermal behaviour of thin- and thick-film resistor with different dimensions and contacts embedded into printed circuit board (PCB) and compare them to the similar constructions of discrete chip resistors assembled to standard PCBs.
Design/methodology/approach
In investigations the thin- and thick-film embedded resistors with the bar form in different dimensions and configurations of contacts as well as rectangular chip resistors in package 0603 and 0402 were used. In tests were carried out the measurements of dissipated power in temperature of resistor about 40°C, 70°C and 155°C. The power dissipation was calculated as a multiplying of electrical current flowing through the resistor with voltage across the resistor. The dissipation of heat generated by electrical current flowing through resistors was examined by means of the FLIR A320 thermographic camera with lens Closeup×2 and the power source.
Findings
The results show that, in case of chip resistors, the intensity of heat radiation strongly depends on dimensions of copper contact lands and also depends on the dimensions of the resistor. In case of embedded resistors, with comparable dimensions to chip resistors, they have lower ability to power dissipation, as well as the copper contact lands dimensions have lower influence. The thermal radiation through resin material is not as effective as it is in case of resistors assembled on PCB. However, the embedded thick-film resistors, especially made of paste Minico M2010, have already the similar parameters to 0402 chip resistors.
Research limitations/implications
Research shows that embedded resistors can be used interchangeably with SMD resistors it allows to open up space on the surface of PCB, but it should be taken into account the lower energy dissipation capabilities. It is suggested that further studies are necessary for accurately determining the thermal effects and investigate the structures of embedded passive components that allow for better heat management.
Originality/value
Thermal stability of embedded resistors during operation is a critical factor of success of embedded resistor technology. The way of power dissipation and heat resistance are one of the important operating parameters of these components. The results provide information about the power and the energy dissipation of embedded thin- and thick-film resistors compared to the standard surface mount technology.
Details
Keywords
Janusz Sitek, Aneta Araźna, Kamil Janeczek, Wojciech Stęplewski, Krzysztof Lipiec, Konrad Futera and Piotr Ciszewski
– The purpose of this paper is to evaluate the reliability of solder joints made on long FR-4 and metal core printed circuit boards using the accelerated thermal cycling.
Abstract
Purpose
The purpose of this paper is to evaluate the reliability of solder joints made on long FR-4 and metal core printed circuit boards using the accelerated thermal cycling.
Design/methodology/approach
Solder joints of diodes and resistors samples made on long FR-4 and aluminum (Al) core printed circuit boards were examined. Two kinds of solder pastes were used for the samples preparation. All samples were subjected to temperature aging cycles (−40°C – 3 hours/+85°C – 3 hours). Solder joints resistance, X-Ray inspection and metallographic cross-sections for samples as received and after 100, 500 and 1,000 hours of thermal cycles were utilized for solder joints assessment.
Findings
It was stated that 1,000 hours of thermal cycles were enough to show reliability problems in solder joints on long and/or AL core printed circuit board assembly (PCBA). The solder joints of R1206 components were the most sensitive reliability elements. The solder joints of LED diodes are more reliable than solder joints of R1206 resistors. Solder joints made on FR-4 substrate were about two times more reliable than ones on AL core substrate. Cracks in solder joints were the visible reason of solder joints failures.
Originality/value
The influence of thermal cycles on the reliability of solder joints on long, FR-4 and metal core printed circuit boards were presented. Findings from this paper can be used for planning of reliability trials during validation of reflow processes of products containing long or long metal core printed circuit boards (PCBs).
Details
Keywords
Wojciech Stęplewski, Mateusz Mroczkowski, Radoslav Darakchiev, Konrad Futera and Grażyna Kozioł
The purpose of this study was the use of embedded components technology and innovative concepts of the printed circuit board (PCB) for electronic modules containing…
Abstract
Purpose
The purpose of this study was the use of embedded components technology and innovative concepts of the printed circuit board (PCB) for electronic modules containing field-programmable gate array (FPGA) devices with a large number of pins (e.g. Virtex 6, FF1156/RF1156 package, 1,156 pins).
Design/methodology/approach
In the multi-layered boards, embedded passive components that support FPGA device input/output (I/O), such as blocking capacitors and pull-up resistors, were used. These modules can be used in rapid design of electronic devices. In the study, the MC16T FaradFlex material was used for the inner capacitive layer. The Ohmega-Ply RCM 25 Ω/sq material was used to manufacture pull-up resistors for high-frequency pins. The embedded components have been connected to pins of the FPGA component by using plated-through holes for capacitors and blind vias for resistors. Also, a technique for a board-to-board joining, by using castellated terminations, is described.
Findings
The fully functional modules for assembly of the FPGA were manufactured. Achieved resistance of embedded micro resistors, as small as the smallest currently used surface-mount device components (01005), was below required tolerance of 10 per cent. Obtained tolerance of capacitors was less than 3 per cent. Use of embedded components allowed to replace the pull-up resistors and blocking capacitors and shortens the signal path from the I/O of the FPGA. Correct connection to the castellated terminations with a very small pitch was also obtained. This allows in further planned studies to create a full signal distribution system from the FPGA without the use of unreliable plug connectors in aviation and space technology.
Originality/value
This study developed and manufactured several innovative concepts of signal distribution from printed circuit boards. The signal distribution solutions were integrated with embedded components, which allowed for significant reduction in the signal path. This study allows us to build the target object that is the module for rapid design of the FPGA device. Usage of a pre-designed module would lessen the time needed to develop a FPGA-based device, as a significant part of the necessary work (mainly designing the signal and power fan-out) will already be done during the module development.
Details