Wojciech Chajec, Wieslaw A. Krzymien and Andreas Strohmayer
The separation of energy conversion and propulsor is a promising aspect of hybrid-electric propulsion systems, allowing for increased installation efficiencies and setting the…
Abstract
Purpose
The separation of energy conversion and propulsor is a promising aspect of hybrid-electric propulsion systems, allowing for increased installation efficiencies and setting the basis for distributed propulsion concepts. University of Stuttgart’s Institute of Aircraft Design has a long experience with electrically powered aircraft, starting with Icaré 2, a solar-powered glider flying, since 1996. Icaré 2 recently has been converted to a three-engine motor glider with two battery-powered wing-tip propellers, in addition to the solar-powered main electric motor. This adds propulsion redundancy and will allow analyzing yaw control concepts with differential thrust and the propeller-vortex interaction at the wing-tip. To ensure airworthiness for this design modification, new ground vibration tests (GVTs) and flutter calculations are required. The purpose of this paper is to lay out the atypical approach to test execution due to peculiarities of the Icaré 2 design such as an asymmetrical aileron control system, the long wing span with low frequencies of the first mode and elevated wing tips bending under gravity and thus affecting the accuracy of the wing torsion frequency measurements.
Design/methodology/approach
A flutter analysis based on GVT results is performed for the aircraft in basic configuration and with wing tip propulsors in pusher or tractor configuration. Apart from the measured resonant modes, the aircraft rigid body modes and the control surface mechanism modes are taken into consideration. The flutter calculations are made by a high-speed, low-cost software named JG2 based on the strip theory in aerodynamics and the V-g method of flutter problem solution.
Findings
With the chosen atypical approach to GVT the impact of the suspension on the test results was shown to be minimal. Flutter analysis has proven that the critical flutter speed of Icaré 2 is sufficiently high in all configurations.
Practical implications
The atypical approach to GVT and subsequent flutter analysis have shown that the effects of wing-tip propulsors on aeroelasticity of the high aspect ratio configuration do not negatively affect flutter characteristics. This analysis can serve as a basis for an application for a permit to fly.
Originality/value
The presented methodology is valuable for the flutter assessment of aircraft configurations with atypical aeroelastic characteristics.
Details
Keywords
A low-cost but credible method of low-subsonic flutter analysis based on ground vibration test (GVT) results is presented. The purpose of this paper is a comparison of two methods…
Abstract
Purpose
A low-cost but credible method of low-subsonic flutter analysis based on ground vibration test (GVT) results is presented. The purpose of this paper is a comparison of two methods of immediate flutter problem solution: JG2 – low cost software based on the strip theory in aerodynamics (STA) and V-g method of the flutter problem solution and ZAERO I commercial software with doublet lattice method (DLM) aerodynamic model and G method of the flutter problem solution. In both cases, the same sets of measured normal modes are used.
Design/methodology/approach
Before flutter computation, resonant modes are supplied by some non-measurable but existing modes and processed using the author’s own procedure. For flutter computation, the modes are normalized using the aircraft mass model. The measured mode orthogonalization is possible. The flutter calculation made by means of both methods are performed for the MP-02 Czajka UL aircraft and the Virus SW 121 aircraft of LSA category.
Findings
In most cases, both compared flutter computation results are similar, especially in the case of high aspect wing flutter. The Czajka T-tail flutter analysis using JG2 software is more conservative than the one made by ZAERO, especially in the case of rudder flutter. The differences can be reduced if the proposed rudder effectiveness coefficients are introduced.
Practical implications
The low-cost methods are attractive for flutter analysis of UL and light aircraft. The paper presents the scope of the low-cost JG2 method and its limitations.
Originality/value
In comparison with other works, the measured generalized masses are not used. Additionally, the rudder effectiveness reduction was implemented into the STA. However, Niedbal (1997) introduced corrections of control surface hinge moments, but the present work contains results in comparison with the outcome obtained by means of the more credible software.
Zdobyslaw Goraj and Wojciech Chajec
The purpose of this paper is to find an influence of the reduced stiffness of actuators, located on the most outer parts of ailerons, flaperons, rudders, elevators and elevons on…
Abstract
Purpose
The purpose of this paper is to find an influence of the reduced stiffness of actuators, located on the most outer parts of ailerons, flaperons, rudders, elevators and elevons on the excitation of flutter. This phenomenon is especially important for unmanned aerial vehicles because they continuously use all these control surfaces for trimming and stabilisation and on the other hand, the numerous statistics show that failure of elements of flight control systems are still the most probable reasons of aircraft critical failure.
Design/methodology/approach
Flutter calculations were performed by use of the classical modal approach. The normal vibrations of the free aircraft were measured in the ground vibration test (GVT). Test results were used either for verification of the FEM model of the structure – in this case for flutter calculation the MSC.Nastran software was used, or directly for flutter calculation. Based on the flutter analysis, the control surfaces critical for flutter were determined.
Findings
These so‐called critical control surfaces –, i.e. surfaces responsible for flutter excitation at first – are localized on outer parts of wing and empennage. It was found that the critical surfaces should have been mass balanced or should be irreversible. In the second case, i.e. when the control surfaces are irreversible, the actuators and drivers should have been of a high reliability, because disconnection of these elements could involve flutter.
Research limitations/implications
This approach within the computational analysis is limited to linear case, otherwise NASTRAN software cannot be used for flutter analysis. GVTs could be performed successfully independently if the structure has linear or non‐linear properties.
Practical implications
It was found that before any flight the stiffness in the flight control system of all control surfaces must carefully be checked and kept above the critical stiffness value. Safety level strongly depends on the reliability of actuators used on such unmanned aerial vehicles. The simulation of disconnection (as a result of damage) of selected control surfaces is possible even if the GVT were provided on undamaged vehicle. To do it, the rotational mode of so‐called “free control surface” should be prepared (as an artificial resonant mode) for all deflected control surfaces; next all the resonant modes should be orthogonalized, relative to this artificial control surfaces mode.
Originality/value
This paper was based on two big European and national projects, and all presented results are original and were never published before. Some selected graphs were shown during the EASN Workshop, Paris, September 2010 at the presentation entitled: “Aeroelastic analysis of remotely controlled research vehicles with numerous control surfaces”.
Details
Keywords
Jędrzej Marjanowski, Jan Tomasiewicz and Wojciech Frączek
The purpose of this paper is to present the process of design and prototyping of a two-seat, electric-powered, self-launching motorglider AOS-71 closely connected with the…
Abstract
Purpose
The purpose of this paper is to present the process of design and prototyping of a two-seat, electric-powered, self-launching motorglider AOS-71 closely connected with the teaching process conducted by the academic staff of Warsaw University of Technology (WUT) within a unique educational ULS – Ultra Light Sailplanes programme.
Design/methodology/approach
The selected design methods and tools used during the development of the motorglider have been described. The computer aided design/computer aided manufacturing modules of the Siemens NX software were used to work on the structural design, tools and technical documentation. The core of the ULS educational programme is to educate aerospace engineering students by providing an opportunity for them to participate in each phase of the aircraft life cycle – from conceptual drawings through structural design and prototyping to manufacturing, testing and maintenance.
Findings
The main innovations of the AOS-71 design are: retractable ecological electric propulsion, spacious cockpit where seats are located side by side and the all-composite airframe made of 90 per cent advanced carbon epoxy composites.
Practical implications
The electric motorglider can be used as a multifunctional flying laboratory for flight research and student education.
Originality/value
The AOS-71 project and its continuation are a valuable example of involving aerospace students in each phase of the aircraft life cycle. It also contributes to the research in the field of using innovative electrical propulsion systems in aircraft designs.