Search results
1 – 3 of 3Nur Alia Sheh Omar and Yap Wing Fen
This paper aims to review the potential application of surface plasmon resonance (SPR) in diagnosis of dengue virus (DENV-2) E-protein and the development of SPR to become an…
Abstract
Purpose
This paper aims to review the potential application of surface plasmon resonance (SPR) in diagnosis of dengue virus (DENV-2) E-protein and the development of SPR to become an alternative DENV sensor.
Design/methodology/approach
In this review, the existing standard laboratory techniques to diagnosis of DENV are discussed, together with their drawbacks. To overcome these drawbacks, SPR has been aimed to be a valuable optical biosensor for identification of antibodies to the DENV antigen. The review also includes the future studies on three-dimensional poly(amidoamine) (PAMAM) dendrimer-surface-assembled monolayer (SAM)-Au multilayer thin films, which are envisaged to have high potential sensitive and selective detection ability toward target E-proteins.
Findings
Application of SPR in diagnosis of DENV emerged over recent years. A wide range of immobilized biorecognition molecules have been developed to combine with SPR as an effective sensor. The detection limit, sensitivity and selectivity of SPR sensing in DENV have been enhanced from time to time, until the present.
Originality/value
The main purpose of this review is to provide authors with up-to-date and useful information on sensing DENV using SPR and to introduce a novel three-dimensional PAMAM-SAM-Au multilayer thin films for future research on SPR sensing applications.
Details
Keywords
Huda Abdullah, Norshafadzila Mohammad Naim, Kok Seng Shum, Aidil Abdul Hamid, Mohd Hafiz Dzarfan Othman, Vidhya Selvanathan, Wing Fen Yap and Seri Mastura Mustaza
Regular monitoring of bacteria, especially Escherichia coli, in wastewater is crucial to ensure the maintenance of public health. Amperometric detection proves to be a fast…
Abstract
Purpose
Regular monitoring of bacteria, especially Escherichia coli, in wastewater is crucial to ensure the maintenance of public health. Amperometric detection proves to be a fast, sensitive and economically viable solution for E. coli enumeration. This paper reported a prototype amperometric sensor based on PANI-ZnO-NiO nanocomposite thin films prepared by sol–gel method and irradiated with gamma ray. The purpose of this study is to investigate the sensor performance of PANI-ZnO-NiO nanocomposite thin films to detect E. coli in water.
Design/methodology/approach
The films were varied with different compositions of ZnO and NiO by using the formula PANI-(ZnO)1-x-(NiO)x, with x = 0.2, 0.4, 0.6 and 0.8. PANI-ZnO-NiO nanocomposite thin films were characterized by using X-ray diffraction (XRD) and atomic force microscopy (AFM) to study the crystallinity and surface morphology of the films. The sensor performance was conducted using the current–voltage (I-V) measurement by testing the films in clean water and E. coli solution.
Findings
XRD diffractograms show the peaks of ZnO (1 0 0) and NiO (1 0 2). AFM analysis shows the surface roughness, and the grain size of PANI-ZnO-NiO thin films decreases when the concentration ratios of NiO increased. I-V curves show the difference in current flow, where the current in E. coli solution is higher than the clean water.
Originality/value
PANI-(ZnO)1-x-(NiO)x nanocomposite thin film with the highest concentration of ZnO performed the highest sensitivity among the other concentrations, which can be used to indicate the presence of E. coli bacteria in water.
Yap Wing Fen and W. Mahmood Mat Yunus
The purpose of this paper is to review the novel application of surface plasmon resonance (SPR) in sensing heavy metal ions and the development of SPR to become an alternative…
Abstract
Purpose
The purpose of this paper is to review the novel application of surface plasmon resonance (SPR) in sensing heavy metal ions and the development of SPR to become an alternative heavy metal ions sensor.
Design/methodology/approach
The possible dangerous toxic effects of heavy metal ions are revealed in the short introduction. The existing conventional methods for sensing heavy metal ions and their drawbacks are also discussed. To overcome these drawbacks, SPR has been investigated from the basic principle to the potential alternative in sensing heavy metal ions.
Findings
Application of SPR in sensing heavy metal ions emerged a decade ago. A wide range of active layers or recognition elements (e.g. polymer, protein, nanoparticles) have been developed to combine with SPR. The detection limit, sensitivity and selectivity of SPR sensing in heavy metal ions have been improved from time to time, until the present.
Originality/value
This paper provides up-to-date and systematic information on SPR sensing for heavy metal ions. Different advancements on active layers or recognition molecules have been discussed in detail and arranged in the order of their chronological evolution. The present review may provide researchers with valuable information regarding novel heavy metal ions sensor using SPR and encourage them to take this area for further research and development.
Details