Search results

1 – 8 of 8
Open Access
Article
Publication date: 18 November 2024

Xiaoyu Zheng and Wenzhen Li

This study investigates whether Chinese local governments’ environmental attention can mitigate corporate “greenwashing”, focusing on the extent of environmental content in annual…

Abstract

Purpose

This study investigates whether Chinese local governments’ environmental attention can mitigate corporate “greenwashing”, focusing on the extent of environmental content in annual government work reports as indicative of government environmental attention. This study aims to determine whether enterprises respond to changes in local governmental attention by improving the quality of their environmental information disclosures.

Design/methodology/approach

Data from China’s A-share listed companies spanning 2013–2021 were sourced from the CSMAR database and company annual reports. Environmental attention data were manually gathered from local government work reports published on official local government websites by using text analysis methods. These datasets were analyzed empirically to assess the impact of local governments’ environmental attention on corporate greenwashing behavior.

Findings

Results show that increased governmental environmental attention significantly reduces corporate greenwashing behavior by alleviating corporate financing constraints, enhancing independent engagement in environmental initiatives and bolstering stakeholder oversight. Moreover, heterogeneity analysis indicates that the influence of government environmental concerns is pronounced in non-state-owned enterprises, firms with subpar audit quality and those exhibiting myopic management tendencies.

Originality/value

This study enriches the existing literature on the government–business nexus. It also introduces methodological innovations by employing a lexical analysis of environmental themes in local government work reports instead of using typical event study approaches. Furthermore, it uses a mediating effect model to identify the mechanisms through which government environmental attention influences corporate greenwashing, namely, government subsidies, corporate environmental initiatives and external stakeholder oversight.

Details

Journal of Asian Business and Economic Studies, vol. 31 no. 5
Type: Research Article
ISSN: 2515-964X

Keywords

Article
Publication date: 13 February 2024

Wenzhen Yang, Shuo Shan, Mengting Jin, Yu Liu, Yang Zhang and Dongya Li

This paper aims to realize an in-situ quality inspection system rapidly for new injection molding (IM) tasks via transfer learning (TL) approach and automation technology.

Abstract

Purpose

This paper aims to realize an in-situ quality inspection system rapidly for new injection molding (IM) tasks via transfer learning (TL) approach and automation technology.

Design/methodology/approach

The proposed in-situ quality inspection system consists of an injection machine, USB camera, programmable logic controller and personal computer, interconnected via OPC or USB communication interfaces. This configuration enables seamless automation of the IM process, real-time quality inspection and automated decision-making. In addition, a MobileNet-based deep learning (DL) model is proposed for quality inspection of injection parts, fine-tuned using the TL approach.

Findings

Using the TL approach, the MobileNet-based DL model demonstrates exceptional performance, achieving validation accuracy of 99.1% with the utilization of merely 50 images per category. Its detection speed and accuracy surpass those of DenseNet121-based, VGG16-based, ResNet50-based and Xception-based convolutional neural networks. Further evaluation using a random data set of 120 images, as assessed through the confusion matrix, attests to an accuracy rate of 96.67%.

Originality/value

The proposed MobileNet-based DL model achieves higher accuracy with less resource consumption using the TL approach. It is integrated with automation technologies to build the in-situ quality inspection system of injection parts, which improves the cost-efficiency by facilitating the acquisition and labeling of task-specific images, enabling automatic defect detection and decision-making online, thus holding profound significance for the IM industry and its pursuit of enhanced quality inspection measures.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 18 April 2023

Wenzhen Yang, Johan K. Crone, Claus R. Lønkjær, Macarena Mendez Ribo, Shuo Shan, Flavia Dalia Frumosu, Dimitrios Papageorgiou, Yu Liu, Lazaros Nalpantidis and Yang Zhang

This study aims to present a vision-guided robotic system design for application in vat photopolymerization additive manufacturing (AM), enabling vat photopolymerization AM hybrid…

Abstract

Purpose

This study aims to present a vision-guided robotic system design for application in vat photopolymerization additive manufacturing (AM), enabling vat photopolymerization AM hybrid with injection molding process.

Design/methodology/approach

In the system, a robot equipped with a camera and a custom-made gripper as well as driven by a visual servoing (VS) controller is expected to perceive objective, handle variation, connect multi-process steps in soft tooling process and realize automation of vat photopolymerization AM. Meanwhile, the vat photopolymerization AM printer is customized in both hardware and software to interact with the robotic system.

Findings

By ArUco marker-based vision-guided robotic system, the printing platform can be manipulated in arbitrary initial position quickly and robustly, which constitutes the first step in exploring automation of vat photopolymerization AM hybrid with soft tooling process.

Originality/value

The vision-guided robotic system monitors and controls vat photopolymerization AM process, which has potential for vat photopolymerization AM hybrid with other mass production methods, for instance, injection molding.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 17 June 2024

Wenzhen Yang, Yu Liu, Jinghua Chen, Yanqiu Chen and Erwei Shang

This paper endeavors to create a predictive model for the energy consumption associated with the multi-material fused deposition modeling (FDM) printing process.

Abstract

Purpose

This paper endeavors to create a predictive model for the energy consumption associated with the multi-material fused deposition modeling (FDM) printing process.

Design/methodology/approach

An online measurement system for monitoring power and temperature has been integrated into the dual-extruder FDM printer. This system enables a comprehensive study of energy consumption during the dual-material FDM printing process, achieved by breaking down the entire dual-material printing procedure into distinct operational modes. Concurrently, the analysis of the G-code related to the dual-material FDM printing process is carried out.

Findings

This work involves an investigation of the execution instructions that delineate the tooling plan for FDM. We measure and simulate the nozzle temperature distributions with varying filament materials. In our work, we capture intricate details of energy consumption accurately, enabling us to predict fluctuations in power demand across different operational phases of multi-material FDM 3D printing processes.

Originality/value

This work establishes a model for quantifying the energy consumption of the dual-material FDM printing process. This model carries significant implications for enhancing the design of 3D printers and advancing their sustainability in mobile manufacturing endeavors.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 5 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 14 September 2012

Wenzhen Bi, Guokui Ju, Fei Lin, Shifang Xie and Xicheng Wei

In a previous study, the authors proposed a new low‐silver solder alloy Sn‐ x(1.0, 1.5, 2.0)Ag‐0.3Cu‐3.0Bi‐0.05Er (wt.%) (SACBE) and the purpose of this paper is to provide…

Abstract

Purpose

In a previous study, the authors proposed a new low‐silver solder alloy Sn‐ x(1.0, 1.5, 2.0)Ag‐0.3Cu‐3.0Bi‐0.05Er (wt.%) (SACBE) and the purpose of this paper is to provide additional useful information for new solder alloy development. The growth behaviour of the interfacial IMC layers for Cu/SACBE/Cu and Cu/SAC/Cu joints and their bonding strengths after thermal aging at 150°C for 0, 24, 168 and 500 hours are investigated and the effects of adding elemental Bi and Er on the growth of interfacial IMC layers in the joints, and their tensile properties, are characterized and discussed.

Design/methodology/approach

The tensile properties of the Cu/Sn‐3.0Ag‐0.5Cu/Cu (Cu/SAC/Cu) and Cu/SACBE/Cu joints during thermal aging at 150°C for 0, 24, 168 and 500 hours were investigated, respectively. The thickness of interfacial IMC layer and the fracture surface of solder joint after isothermal aging were observed and analyzed by means of scanning electron micrograph (SEM) equipped with an energy dispersive spectroscopy X‐ray (EDX) analysis system.

Findings

It was found that the thickness of the IMC layer at the interface of a Cu/SACBE/Cu joint was remarkably thinner than that of a Cu/SAC/Cu joint. The addition of Bi and Er could significantly improve the tensile properties of the solder joint and enhance its resistance to high temperature aging. A mixture of ductile and brittle fracture mode was observed after tensile testing in the Cu/SACBE/Cu joints.

Originality/value

The paper implies that the addition of Bi and Er could complement effectively the effects of Ag, thereby reducing the cost of solder. The low‐silver SACBE solder is a potential alloy for electronic packaging production.

Details

Soldering & Surface Mount Technology, vol. 24 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 26 August 2014

Guokui Ju, Fei Lin, Wenzhen Bi, Yongjiu Han, Wang Junjie and Xicheng Wei

The purpose of this study was to comparatively investigate interfacial intermetallic compounds (IMCs) in the Sn3.0Ag0.5Cu3.0Bi0.05Cr/Cu (SACBC/Cu) and Sn3.0Ag0.5Cu/Cu (SAC/Cu…

Abstract

Purpose

The purpose of this study was to comparatively investigate interfacial intermetallic compounds (IMCs) in the Sn3.0Ag0.5Cu3.0Bi0.05Cr/Cu (SACBC/Cu) and Sn3.0Ag0.5Cu/Cu (SAC/Cu) solder joints, and to determine any differences.

Design/methodology/approach

The samples were annealed after isothermal ageing at 150°C for 0, 168 and 500 hours, and their cross-sections were observed by scanning electron microscopy and energy dispersive spectroscopy.

Findings

The interfacial IMC morphology in two joints had significant differences. For the Cu/SAC/Cu joints, the granular and short rod-like Ag3Sn particles attached on the surface and boundary of interfacial Cu6Sn5 grains were detected, and they coarsened observably with ageing time at 150°C, and lastly embedded at the grain boundaries. However, for the Cu/SACBC/Cu joints, there were tiny filamentous Ag3Sn growing on the surface of interfacial Cu6Sn5 grains, and the Ag3Sn had a tendency to break into nanoparticles, which would be distributed evenly and cover the IMC layer, profiting from the Bi and Cr precipitates from solder matrix during ageing.

Originality/value

The paper implies that the addition of Bi and Cr could affect the IMCs of joints, thereby delaying interfacial reactions between Sn and Cu atoms and improving the service reliability. The SACBC solder is a potential alloy for electronic packaging production.

Details

Soldering & Surface Mount Technology, vol. 26 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 21 June 2023

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf Charles D’Souza and Thirumaleshwara Bhat

This paper aims to report the effect of titanium oxide (TiO2) particles on the specific wear rate (SWR) of alkaline treated bamboo and flax fiber-reinforced composites (FRCs…

Abstract

Purpose

This paper aims to report the effect of titanium oxide (TiO2) particles on the specific wear rate (SWR) of alkaline treated bamboo and flax fiber-reinforced composites (FRCs) under dry sliding condition by using a robust statistical method.

Design/methodology/approach

In this research, the epoxy/bamboo and epoxy/flax composites filled with 0–8 Wt.% TiO2 particles have been fabricated using simple hand layup techniques, and wear testing of the composite was done in accordance with the ASTM G99-05 standard. The Taguchi design of experiments (DOE) was used to conduct a statistical analysis of experimental wear results. An analysis of variance (ANOVA) was conducted to identify significant control factors affecting SWR under dry sliding conditions. Taguchi prediction model is also developed to verify the correlation between the test parameters and performance output.

Findings

The research study reveals that TiO2 filler particles in the epoxy/bamboo and epoxy/flax composite will improve the tribological properties of the developed composites. Statistical analysis of SWR concludes that normal load is the most influencing factor, followed by sliding distance, Wt.% TiO2 filler and sliding velocity. ANOVA concludes that normal load has the maximum effect of 31.92% and 35.77% and Wt.% of TiO2 filler has the effect of 17.33% and 16.98%, respectively, on the SWR of bamboo and flax FRCs. A fairly good agreement between the Taguchi predictive model and experimental results is obtained.

Originality/value

This research paper attempts to include both TiO2 filler and bamboo/flax fibers to develop a novel hybrid composite material. TiO2 micro and nanoparticles are promising filler materials, it helps to enhance the mechanical and tribological properties of the epoxy composites. Taguchi DOE and ANOVA used for statistical analysis serve as guidelines for academicians and practitioners on how to best optimize the control variable with particular reference to natural FRCs.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 13 October 2022

Xiaomeng Zhang, Sang Xiong, Feng Gao, Jinyuan Du and Qin-Jian Du

WO3 particles were prepared by the sol-gel method. Tetraethyl silicate (TEOS) was used to obtain a SiO2-coated WO3 nanoparticle. Quantum chemical parameters of oleic acid…

Abstract

Purpose

WO3 particles were prepared by the sol-gel method. Tetraethyl silicate (TEOS) was used to obtain a SiO2-coated WO3 nanoparticle. Quantum chemical parameters of oleic acid, triethanolamine, glycerol and methyl pentane as dispersants were theoretically calculated. Tribological properties of SiO2/WO3 nanocomposite lubricant were carried out on an MRS-10A four-ball friction and wear tester.

Design/methodology/approach

The purpose of this study is to investigate the preparation and tribological properties of SiO2/WO3 nanocomposite lubricant.

Findings

The obtained SiO2-coated WO3 nanoparticle (nano-SiO2/WO3) with a particle size of about 70 nm. The calculated adsorption energy of triethanolamine on the surface of the steel ball is 554.6 eV, and triethanolamine is selected as the dispersant. The dispersion effect of SiO2/WO3 nanocomposite lubricant is good, which shows that triethanolamine oleate plays a good dispersion role in the preparation of lubricant, which is consistent with the calculation results of the adsorption capacity of dispersant. As a good auxiliary lubricant, SiO2 can improve the tribological properties and wear resistance of WO3.

Originality/value

Nanocomposite lubricants have been the focus of research in recent years, which could greatly reduce energy consumption. And the SiO2/WO3 exhibited excellent lubrication performance as a lubricant additive. The lubrication mechanism of SiO2/WO3 nanocomposite lubricant is the synergistic lubrication mechanism of friction film lubrication and antifriction bearing. This study could provide a certain reference for the practical application of nanocomposite lubricants.

Details

Industrial Lubrication and Tribology, vol. 75 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 8 of 8