Siyun Liu, Wenzeng Zhang and Jie Sun
Underactuated fingers are adapted to generate several grasping modes for different tasks, and coupled fingers and self-adaptive fingers are two important types of them. Aiming to…
Abstract
Purpose
Underactuated fingers are adapted to generate several grasping modes for different tasks, and coupled fingers and self-adaptive fingers are two important types of them. Aiming to expand the application and increase adaptability of robotic hand, this paper aims to propose a novel grasping model, called coupled and indirectly self-adaptive (CISA) grasping model, which is the combination of coupled finger and indirectly self-adaptive finger.
Design/methodology/approach
CISA grasping process includes two stages: first, coupled and then indirectly self-adaptive grasping; thus, it is not only integrated with the good pinching ability of coupled finger but also characterized with the high flexibility of indirectly self-adaptive finger. Furthermore, a CISA hand with linkage-slider, called CISA-LS hand, is designed based on the CISA grasping model, consisting of 1 palm, 5 CISA-LS fingers and 14 degrees of freedom.
Findings
To research the grasping behavior of CISA-LS hand, kinematic analysis, dynamic analysis and force analysis of 2-joint CISA-LS finger are performed. Results of grasping experiments for different objects demonstrate the high reliability and stability of CISA-LS hand.
Originality/value
CISA fingers integrate two grasping modes, coupled grasping and indirectly self-adaptive grasping, into one finger. And a double-linkage-slider mechanism is designed as the switch device.
Details
Keywords
This paper aims to propose a novel hand to bridge the gap between the traditional rigid robot hands and the soft hands to obtain a better grasping performance.
Abstract
Purpose
This paper aims to propose a novel hand to bridge the gap between the traditional rigid robot hands and the soft hands to obtain a better grasping performance.
Design/methodology/approach
The proposed hand consists of three fingers. Each finger has 15 degrees of freedom and three phalanxes, which can bend in one direction when load is applied, but they are rigid toward the opposite direction at the initial position. The grasping process and simulations of the fingers are discussed in this paper. Both kinematic and dynamics analyses are performed to predict the performance of the hand. Subsequently, a prototype of the hand is developed for experiments.
Findings
Both kinematics and dynamics analyses indicate good grasping performance of the hand. Simulations and experiments confirm the feasibility of the finger design. The hand can execute hybrid grasping modes with more uniform force distribution and a larger workspace than traditional rigid fingers. The proposed hand has much potential in the industrial sector.
Originality/value
A new method to obtain better grasping performance and to bridge the gap between the rigid finger and the soft finger has been presented and verified. The hand combines the advantages of both the rigid phalanxes and the soft fingers. Compared with some traditional rigid fingers, the proposed design has a more uniform force distribution and a bigger workspace.
Details
Keywords
Wenzeng Zhang, Demeng Che, Hongbin Liu, Xiande Ma, Qiang Chen, Dong Du and Zhenguo Sun
The purpose of this paper is to present recent work designing a mechanical robotic hand for self‐adaptive grasping, human‐like appearance, which can be used in a humanoid robot…
Abstract
Purpose
The purpose of this paper is to present recent work designing a mechanical robotic hand for self‐adaptive grasping, human‐like appearance, which can be used in a humanoid robot. Conventional robotic devices are relatively complex, large, cumbersome and difficult to be installed in a humanoid robot arm. Under‐actuated robot hands use less motors to drive more rotating joints, thus to simplify the mechanical structure, decrease the volume and weight and finally lower the difficulty of control and the cost.
Design/methodology/approach
A novel under‐actuated finger mechanism is designed, which is based on a gear‐rack mechanism, spring constraint and an active sleeve middle phalanx. The principle analyses of its self‐adaptive grasp and end power grasping are given. A new multi‐fingered hand named as TH‐3R Hand is designed based on the finger.
Findings
The design finger mechanism can be used in a robotic hand to make the hand obtain more degrees of freedom (DOF) with fewer actuators, and good grasping function of shape adaptation, decrease the requirement of control system. TH‐3R Hand has five fingers, 15 DOF. All fingers are similar. TH‐3R Hand has many advantages: it is simple in structure, light in weight, easy to control and low in cost. TH‐3R Hand can passively adapt different shapes and sizes of the grasped object. Experimental studies have demonstrated the self‐adaptation in grasping of the finger.
Research limitations/implications
The implication of this research is that under‐actuated robotic hands are appropriate for the missions of grasping different objects. The limitation of the research to date is that issues of sensors, control, and communication have not yet been addressed.
Practical implications
Key technologies of the under‐actuated finger and TH‐3R Hand, with self‐adaptive grasping, human‐like appearance and low‐cost lightweight, are feasible. These technologies have the potential to make a significant impact.
Originality/value
These results present a self‐adaptive under‐actuated grasp concept and a humanoid robotic hand with under‐actuated gear‐rack mechanism.