Search results

1 – 5 of 5
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 29 October 2024

Hongxing Wu, Wenyuan Mao, Feng Jiao, Qiangguo Deng, Xuejian Sun and Hengjie Xu

The purpose of this paper is to obtain the matching relationship between spiral groove, equalizing groove and operation parameters through the biparametric analysis for the…

28

Abstract

Purpose

The purpose of this paper is to obtain the matching relationship between spiral groove, equalizing groove and operation parameters through the biparametric analysis for the bidirectional pumping hydrodynamic-static hybrid dry gas seal (BP-HHDGS).

Design/methodology/approach

The large eddy simulation (LES) model in Fluent is used to simulate the flow field of BP-HHDGS, and the biparameter variables method is chosen to analyze the effects of different parameters on the performance of BP-HHDGS.

Findings

BP-HHDGS has a greater opening force than hydrostatic dry gas seal (HDGS); the vortex is formed after lubricating gas is exhausted from the throttle. Increasing the depth of the equalizing groove and spiral groove has a synergistic enhancement effect on the opening force and leakage of BP-HHDGS. There is a matching relationship between spiral angle and rotational speed. The preferred parameter ranges in current conditions are found as follows: spiral angle αa = 15°–24°; groove-dam ratio λ = 0.4–0.7; equalizing groove depth hj > 35 µm; spiral groove depth hg = 5-10 µm.

Originality/value

The high starting capacity of HDGS is given to the hydrodynamic type seal, and thus the application promotion of HDGS in high-speed working condition is realized at the same time. This work also provides precise and quick theoretical guidance for the selection and design of hydrodynamic-static dry gas seal and further promotion.

Details

Industrial Lubrication and Tribology, vol. 76 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Access Restricted. View access options
Article
Publication date: 6 September 2024

Wei Chen, Hengjie Xu, Wenyuan Mao, Meihong Liu, Xuejian Sun and Qiangguo Deng

This study aims to investigate the influence mechanism of thermal-mechanical deformations on the CO2 mixture gases dry gas seal (DGS) flow field and compare the deformation…

54

Abstract

Purpose

This study aims to investigate the influence mechanism of thermal-mechanical deformations on the CO2 mixture gases dry gas seal (DGS) flow field and compare the deformation characteristics and sealing performance between two-way and one-way thermal-fluid-solid coupling models.

Design/methodology/approach

The authors established a two-way thermal-fluid-solid coupling model by using gas film thickness as the transfer parameter between the fluid and solid domain, and the model was solved using the finite difference method and finite element method. The thermal-mechanical deformations of the sealing rings, the influence of face deformation on the flow field and sealing performance were obtained.

Findings

Thermal-mechanical deformations cause a convergent gap between the two sealing end faces, resulting in an increase in the gas film thickness, but a decrease in the gas film temperature and sealing ring temperature. The axial relative deformations of rotating and stationary ring end faces caused by mechanical and thermal loads in the two-way coupling model are less than those in the one-way coupling (OWC) model, and the gas film thickness and leakage rate are larger than those in the OWC model, whereas the gas film stiffness is the opposite.

Originality/value

This paper provides a theoretical support and reference for the operational stability and structural optimization design of CO2 mixture gases DGS under high-pressure and high-speed operation conditions.

Details

Industrial Lubrication and Tribology, vol. 76 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Access Restricted. View access options
Article
Publication date: 13 April 2023

Hengjie Xu, Yinggang Yue, Pengyun Song, Wenyuan Mao, Qiangguo Deng and Xuejian Sun

This study aims to acquire the influence mechanism of gas film adaptive adjustment (GFAA) acted on the dynamic characteristics of spiral groove dry gas seal (S-DGS) and then…

119

Abstract

Purpose

This study aims to acquire the influence mechanism of gas film adaptive adjustment (GFAA) acted on the dynamic characteristics of spiral groove dry gas seal (S-DGS) and then propose a sealing stability enhancement measure.

Design/methodology/approach

The gas film dynamic stiffness and damping of S-DGS are obtained by numerically solving the transient Reynolds equation based on perturbation method and finite difference method. The dynamic coefficients in GFAA model and constant gas film thickness (CGFT) model are compared and analyzed.

Findings

There is the risk to misestimate the instability of DGS with rotational speed or medium pressure grows under the condition of CGFT assumption. Based on GFAA model, increasing balance ratio B properly is an effective measure to improve the stability of DGS. The balance ratio can stimulate the sensitivity of gas film dynamic coefficients to the variation of rotational speed. Increasing medium pressure in small balance ratio range will be conducive to reducing the risk of angular instability.

Originality/value

The influence mechanism of GFAA on S-DGS dynamic characteristics is analyzed. The interactions between rotational speed and balance ratio, medium pressure and balance ratio acted on gas film dynamic characteristics are explored based on the GFAA model.

Details

Industrial Lubrication and Tribology, vol. 75 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Access Restricted. View access options
Article
Publication date: 19 November 2024

Abdul Jelil Abukari, Wenyuan Li, Abdul Rasheed Akeji Alhassan Alolo, Pomegbe Wisdom Wise Kwabla, Ingrid Ruth Epezagne Assamala and Ibrahim Sulemana

The study constructs a novel theoretical model based on resource orchestration theory and examines it using data from Ghanaian small and medium-sized enterprises (SMEs).

48

Abstract

Purpose

The study constructs a novel theoretical model based on resource orchestration theory and examines it using data from Ghanaian small and medium-sized enterprises (SMEs).

Design/methodology/approach

Entrepreneurial bricolage (EB) represents a creative mechanism by which SMEs navigate resource challenges to become competitive. The purpose of this paper is to examine the link between EB to both innovation performance and firm performance among manufacturing SMEs in Ghana. In addition, we also examine the mediating role of polychronicity in the relationship between EB, innovation performance and firm performance.

Findings

The results suggest that EB positively and significantly influences both innovation performance and firm performance. Furthermore, polychronicity partially mediates the relationship between EB and innovation performance and between EB and firm performance.

Originality/value

This study enhances our understanding of the conditions under which EB may facilitate the attainment of innovation and firm performance among manufacturing SMEs. These findings also proffer practical and managerial implications for managing SMEs under resource constraints.

Details

Cross Cultural & Strategic Management, vol. 31 no. 4
Type: Research Article
ISSN: 2059-5794

Keywords

Access Restricted. View access options
Article
Publication date: 14 September 2015

Qinming Liu and Wenyuan Lv

The traditional maintenance scheduling strategies of multi-component systems may result in maintenance shortage or overage, while system degradation information is often ignored…

732

Abstract

Purpose

The traditional maintenance scheduling strategies of multi-component systems may result in maintenance shortage or overage, while system degradation information is often ignored. The purpose of this paper is to propose a multi-phase model that better integrates degradation information, dependencies and maintenance at the tactical level.

Design/methodology/approach

This paper proposes first a maintenance optimization model for multi-component systems with economic dependence and structural dependence. The cost of combining maintenance activities is lower than that of performing maintenance on components separately, and the downtime cost can be reduced by considering structural dependence. Degradation information and multiple maintenance actions within scheduling horizon are considered. Moreover, the maintenance resources can be integrated into the optimization model. Then, the optimization model adopting one maintenance activity is extended to multi-phase optimization model of the whole system lifetime by taking into account the cost and the expected number of downtime.

Findings

The superiority of the proposed method compared with periodic maintenance is demonstrated. Thus, the values of both integrated degradation information and considering dependencies are testified. The advantage of the proposed method is highlighted in the cases of high system utilization, long maintenance durations and low maintenance costs.

Originality/value

Few studies have been carried out to integrate decisions on degradation, dependencies and maintenance. Their considerations are either incomplete or not realistic enough. A more comprehensive and realistic multi-phase model is proposed in this paper, along with an iterative solution algorithm for it.

Details

Industrial Management & Data Systems, vol. 115 no. 8
Type: Research Article
ISSN: 0263-5577

Keywords

1 – 5 of 5
Per page
102050