Search results
1 – 10 of 17Yan Wang, Chunpeng Liu and Wenchao Zhao
This study employed a questionnaire survey to understand the safety attitudes, focusing on safety motivation and risk tolerance as well as safety management practices, including…
Abstract
Purpose
This study employed a questionnaire survey to understand the safety attitudes, focusing on safety motivation and risk tolerance as well as safety management practices, including safety training and safety incentives, among construction site employees, including both managerial personnel and frontline workers. The objective was to explore the relationship between safety management practices and safety attitudes within both the managerial and frontline worker groups.
Design/methodology/approach
This study was conducted among 1,026 construction workers and 256 managerial personnel at 53 construction sites across 12 provinces in China. A t-test was used to compare the differences in safety-related scores between managerial personnel and frontline workers, and a structural equation model was used to explore the relationship between safety attitudes and safety management.
Findings
This study found that the scores of managerial personnel for safety motivation, safety training and safety incentives were significantly higher than construction workers, while their scores for risk tolerance were significantly lower than construction workers. Managerial personnel’s safety motivation has a significant positive impact on both safety training and safety incentives, while their risk tolerance has a significant negative impact on safety incentives. Safety training has a significant positive effect on construction workers’ safety motivation, whereas safety incentives have a significant negative impact on construction workers’ risk tolerance.
Originality/value
This study is one of the few that have investigated construction safety by conducting surveys targeting both site managerial personnel and frontline workers, employing an empirical approach to validate the role of safety management in transmitting safety attitudes from site managerial personnel to frontline workers.
Details
Keywords
Wenchao Zhang, Peixin Shi, Zhansheng Wang, Huajing Zhao, Xiaoqi Zhou and Pengjiao Jia
An accurate prediction of the deformation of retaining structures is critical for ensuring the stability and safety of braced deep excavations, while the high nonlinear and…
Abstract
Purpose
An accurate prediction of the deformation of retaining structures is critical for ensuring the stability and safety of braced deep excavations, while the high nonlinear and complex nature of the deformation makes the prediction challenging. This paper proposes an explainable boosted combining global and local feature multivariate regression (EB-GLFMR) model with high accuracy, robustness and interpretability to predict the deformation of retaining structures during braced deep excavations.
Design/methodology/approach
During the model development, the time series of deformation data is decomposed using a locally weighted scatterplot smoothing technique into trend and residual terms. The trend terms are analyzed through multiple adaptive spline regressions. The residual terms are reconstructed in phase space to extract both global and local features, which are then fed into a gradient-boosting model for prediction.
Findings
The proposed model outperforms other established approaches in terms of accuracy and robustness, as demonstrated through analyzing two cases of braced deep excavations.
Research limitations/implications
The model is designed for the prediction of the deformation of deep excavations with stepped, chaotic and fluctuating features. Further research needs to be conducted to expand the model applicability to other time series deformation data.
Practical implications
The model provides an efficient, robust and transparent approach to predict deformation during braced deep excavations. It serves as an effective decision support tool for engineers to ensure the stability and safety of deep excavations.
Originality/value
The model captures the global and local features of time series deformation of retaining structures and provides explicit expressions and feature importance for deformation trends and residuals, making it an efficient and transparent approach for deformation prediction.
Details
Keywords
Wenchao Tian, Jianyuan Jia, Guiming Chen and Guangyan Chen
The “Snap back” problem of the micro‐cantilever remains one of the dominant failure mechanisms in the Micro Electro‐mechanical System (MEMS). By analyzing the Hamaker micro…
Abstract
The “Snap back” problem of the micro‐cantilever remains one of the dominant failure mechanisms in the Micro Electro‐mechanical System (MEMS). By analyzing the Hamaker micro continuum medium and solid physics principle, the consistency model of Wigner‐Seitz (W‐S) continuum medium is presented. The gap revision coefficients of the body with the face‐centered cubic structure are derived, which include the attractive force and the repulsive one. The adhesion model of the 500 µ m X 1 µ m silicon micro‐cantilever coated by Au is established. The micro‐cantilever static relationship between the elastic force and the adhesion force is discussed. The reason of the microcantilever “snap back” problem, an instable balanced point, is discovered. Increasing the rigidity of the micro‐cantilever, a method to avoid the micro‐cantilever “snap back” to happen, is put forward, which improves MEMS structure design and enhances MEMS reliability.
Details
Keywords
Wenchao Duan, Siqi Yin, Wenhong Liu, Jian Yang, Qingfeng Zhu, Lei Bao, Ping Wang, Jianzhong Cui and Zhiqiang Zhang
The purpose of this paper is to investigate the effect of pulsed magnetic field (PMF) with different duty cycles on the melt flow and heat transfer behaviors during direct-chill…
Abstract
Purpose
The purpose of this paper is to investigate the effect of pulsed magnetic field (PMF) with different duty cycles on the melt flow and heat transfer behaviors during direct-chill (DC) casting of large-size magnesium alloy billet and find the appropriate range of duty cycle.
Design/methodology/approach
A transient two-dimensional mathematical model coupled electromagnetic field, flow field and thermal field, is conducted to study the melt flow and temperature field under PMF and compared with that under the harmonic magnetic field.
Findings
The results reveal that melt vibration and fluctuation are generated due to the instantaneous impact of repeated thrust and pull effects of Lorentz force under PMF. The peak of Lorentz force decreases greatly with the increasing duty cycle, but the melt fluctuation region is expanded with higher duty cycle, which accelerates the interior melt velocity and reduces the temperature gradient at the liquid-solid interface. However, PMF with overly high duty cycle has adverse effect on the melt convection and limited influence on the interior melt. A duty cycle of 20% to 50% is a reasonable range.
Practical implications
This paper can provide guiding significance for the setting of duty cycle parameters on DC casting under PMF.
Originality/value
There are few reports on the effect of PMF parameters during DC casting with applying PMF, especially for duty cycle, a parameter unique to PMF. The findings will be helpful for applying the external field of PMF on DC casting.
Details
Keywords
Anyu Wang and Nuoya Chen
This case is about “Red”, a cross-border e-commerce platform developed from a community which was built to share overseas shopping experience. With sharp insights into the…
Abstract
This case is about “Red”, a cross-border e-commerce platform developed from a community which was built to share overseas shopping experience. With sharp insights into the consumption behavior of urban white-collar women and riding on its community e-commerce advantage, “Red”, a cross-border e-commerce startup, pulled in three rounds of financing within just 16 months regardless of increasingly competitive market. On the other hand, well-established platforms such as T-mall International and Joybuy also stepped in, and their involvement will also speed up the industry integration and usher in a reshuffling period. Confronted with the “price war” started by those e-commerce giants, in what ways can “Red” adjust its shopping experience and after-sales services to enhance the brand value and sharpen its edge?
Wenchao Zhang, Enming Cui, Cheng Wang, Baoquan Zhang, Jiwei Jin, Pengfei Zhang, Wending Wu and Mingwei Wang
An investigation was conducted into the impact of various process parameters on the surface and subsurface quality of glass-ceramic materials, as well as the mechanism of material…
Abstract
Purpose
An investigation was conducted into the impact of various process parameters on the surface and subsurface quality of glass-ceramic materials, as well as the mechanism of material removal and crack formation, through the use of ultrasonic-assisted grinding.
Design/methodology/approach
A mathematical model of crack propagation in ultrasonic-assisted grinding was established, and the mechanism of crack formation was described through the model. A series of simulations and experiments were conducted to investigate the impact of process parameters on crack depth, surface roughness, and surface topography during ultrasonic-assisted surface and axial grinding. Additionally, the mechanism of crack formation was explored.
Findings
During ultrasonic-assisted grinding, the average grinding forces are between 0.4–1.0 N, which is much smaller than that of ordinary grinding (1.0–3.5 N). In surface grinding, the maximum surface stresses between the workpiece and the tool gradually decrease with the tool speed. The surface stresses of the workpiece increase with the grinding depth, and the depth of subsurface cracks increases with the grinding depth. With the increase of the axial grinding speed, the subsurface damage depth increases. The roughness increases from 0.780um/1.433um.
Originality/value
A mathematical model of crack propagation in ultrasonic-assisted grinding was established, and the mechanism of crack formation was described through the model. The deformation involved in the grinding process is large, and the FEM-SPH modeling method is used to solve the problem that the results of the traditional finite element method are not convergent and the calculation efficiency is low.
Details
Keywords
Wenchao Ma, Lina He, Zeng Dan, Guanyi Chen and Xuebin Lu
With the rapid development of China’s urbanisation and market economy, municipal solid waste (MSW) generation is increasing dramatically. In response to the threat of…
Abstract
With the rapid development of China’s urbanisation and market economy, municipal solid waste (MSW) generation is increasing dramatically. In response to the threat of environmental pollution and the potential value of converting waste into energy, both the government and the public are now paying more attention to MSW treatment and disposal methods. In 2014, 178.6 million tonnes of MSW was collected at a safe treatment rate of 84.8%. However, the treatment methods and the composition of MSW are influenced by the collection area, its gross domestic product, population, rainfall and living conditions. This chapter analysed the MSW composition properties of Lhasa, Tibet, compared with other cities, such as Beijing, Guangzhou and so forth. The research showed that the moisture content of MSW in Lhasa approaches 31%, which is much lower than the other cities mentioned previously. The proportion of paper and plastics (rubbers) collected was 25.67% and 19.1%, respectively. This was 1.00–3.17 times and 0.75–2.44 times more than those found in Beijing and Guangzhou, respectively. Non-combustibles can reach up to 22.5%, which was 4.03–9.11 times that of Beijing and Guangzhou, respectively. The net heating values could reach up to 6,616 kilojoule/kilogram. The food residue was only half the proportion found in other cities. Moreover, the disposal method applied in each city has also been studied and compared.
Details
Keywords
Yongkun Wang, Yuting Zhang, Jinhua Zhang, Junjue Ye and Wenchao Tian
The purpose of this paper is to study the influence of calcium sulfate whiskers (CSWs) on the thermodynamic properties and shape memory properties of epoxy/cyanate ester shape…
Abstract
Purpose
The purpose of this paper is to study the influence of calcium sulfate whiskers (CSWs) on the thermodynamic properties and shape memory properties of epoxy/cyanate ester shape memory composites.
Design/methodology/approach
To improve the mechanical properties of shape memory cyanate ester (CE)/epoxy polymer (EP) resin, high performance CSWs were used to reinforce the thermo-induced shape memory CE/EP composites and the shape memory CSW/CE/EP composites were prepared by molding. The effect of CSW on the mechanical properties and shape memory behavior of shape memory CE/EP composites was investigated.
Findings
After CSW filled the shape memory CE/EP composites, the bending strength of the composites is greatly improved. When the content of CSW is 5 Wt.%, the bending strength of the composite is 107 MPa and the bending strength is increased by 29 per cent compared with bulk CE/EP resin. The glass transition temperature and storage modulus of the composites were improved in CE/EP resin curing system. However, when the content of CSW is more than 10 Wt.%, clusters are easily formed between whiskers and the voids between whiskers and matrix increase, which will lead to the decrease of mechanical properties of composites. The results of shape memory test show that the shape memory recovery time of the composites decreases with the decrease of CSW content at the same temperature. In addition, the shape recovery ratio of the composites decreased slightly with the increase of the number of thermo-induced shape memory cycles.
Research limitations/implications
A simple way for fabricating thermo-activated SMP composites has been developed by using CSW.
Originality/value
The outcome of this study will help to fabricate the SMP composites with high mechanical properties and the shape memory CSW/CE/EP composites are expected to be used in space deployable structures.
Details
Keywords
Qihua Ma, Qilin Li, Wenchao Wang and Meng Zhu
This study aims to achieve superior localization and mapping performance in point cloud degradation scenarios through the effective removal of dynamic obstacles. With the…
Abstract
Purpose
This study aims to achieve superior localization and mapping performance in point cloud degradation scenarios through the effective removal of dynamic obstacles. With the continuous development of various technologies for autonomous vehicles, the LIDAR-based Simultaneous localization and mapping (SLAM) system is becoming increasingly important. However, in SLAM systems, effectively addressing the challenges of point cloud degradation scenarios is essential for accurate localization and mapping, with dynamic obstacle removal being a key component.
Design/methodology/approach
This paper proposes a method that combines adaptive feature extraction and loop closure detection algorithms to address this challenge. In the SLAM system, the ground point cloud and non-ground point cloud are separated to reduce the impact of noise. And based on the cylindrical projection image of the point cloud, the intensity features are adaptively extracted, the degradation direction is determined by the degradation factor and the intensity features are matched with the map to correct the degraded pose. Moreover, through the difference in raster distribution of the point clouds before and after two frames in the loop process, the dynamic point clouds are identified and removed, and the map is updated.
Findings
Experimental results show that the method has good performance. The absolute displacement accuracy of the laser odometer is improved by 27.1%, the relative displacement accuracy is improved by 33.5% and the relative angle accuracy is improved by 23.8% after using the adaptive intensity feature extraction method. The position error is reduced by 30% after removing the dynamic target.
Originality/value
Compared with LiDAR odometry and mapping algorithm, the method has greater robustness and accuracy in mapping and localization.
Details
Keywords
Pei Li, Ye Tian, JunJie Wu and Wenchao Xu
The purpose of this paper evaluates the effects of the Great Western Development (GWD) policy on agricultural intensification, land use, agricultural production and rural poverty…
Abstract
Purpose
The purpose of this paper evaluates the effects of the Great Western Development (GWD) policy on agricultural intensification, land use, agricultural production and rural poverty in western China.
Design/methodology/approach
The authors collect county-level data on land use, input application, grain crop production, income, poverty and geophysical characteristics for 1996–2005 and use a quasi-natural experimental design of difference-in-differences (DD) in the empirical analysis.
Findings
Results suggest that the GWD policy significantly increased the grain crop production in western China. This increase resulted from higher yield, with increased fertilizer use and agricultural electricity consumption per hectare, and more land allocated to grow grain crops. The policy also increased land-use concentration, reduced crop diversity and alleviated rural poverty in western China.
Originality/value
This paper makes three contributions. First, the authors add to the growing literature on the GWD policy by evaluating its effects on farm household decisions and exploring the mechanisms and broad socioeconomic impacts in western China. Second, the authors take advantage of a quasi-natural experimental design to improve the identification strategy where input use, land allocation, production and off-farm labor participation are all endogenous in a farm household. Third, the authors explore a long list of variables within one integrated dataset to present a comprehensive picture of the impact of the GWD policy.
Details