Mathieu Guerin, Fayu Wan, Konstantin Gorshkov, Xiaoyu Huang, Bogdana Tishchuk, Frank Elliot Sahoa, George Chan, Sahbi Baccar, Wenceslas Rahajandraibe and Blaise Ravelo
The purpose of this paper is to provide the high-pass (HP) negative group delay (NGD) circuit based (RL) network. Synthesis and experimental investigation of HP-NGD circuit are…
Abstract
Purpose
The purpose of this paper is to provide the high-pass (HP) negative group delay (NGD) circuit based (RL) network. Synthesis and experimental investigation of HP-NGD circuit are developed.
Design/methodology/approach
The research work methodology is organized in three phases. The definition of the HP-NGD ideal specifications is introduced. The synthesis method allowing to determine the RL elements is developed. The validation results are discussed with comparison between the calculated model, simulation and measurement.
Findings
This paper shows a validation of the HP-NGD theory with responses confirming NGD optimal frequency, value and attenuation of about (9 kHz, −1.12 µs, −1.64 dB) and (21 kHz, −0.92 µs, −4.81 dB) are measured. The tested circuits have experimented NGD cut-off frequencies around 5 and 11.7 kHz.
Research limitations/implications
The validity of the HP-NGD topology depends on the coil self-inductance resonance. The HP-NGD effect is susceptible to be penalized by the parasitic elements of the self.
Practical implications
The NGD circuit is usefully exploited in the electronic and communication system to reduce the undesired delay effect context. The NGD can be used to compensate the delay in any electronic devices and system.
Social implications
Applications based on the NGD technology will be helpful in the communication, transportation and security research fields by reducing the delay inherent to any electronic circuit.
Originality/value
The originality of the paper concerns the synthesis formulations of the RL elements in function of the expected HP-NGD optimal frequency, value and attenuation. In addition, an original measurement technique of HP-NGD is also introduced.
Details
Keywords
Sébastien Lalléchére, Jamel Nebhen, Yang Liu, George Chan, Glauco Fontgalland, Wenceslas Rahajandraibe, Fayu Wan and Blaise Ravelo
The purpose of this paper is to study, a bridged-T topology with inductorless passive network used as a bandpass (BP) negative group delay (NGD) function.
Abstract
Purpose
The purpose of this paper is to study, a bridged-T topology with inductorless passive network used as a bandpass (BP) negative group delay (NGD) function.
Design/methodology/approach
The BP NGD topology under study is composed of an inductorless passive resistive capacitive network. The circuit analysis is elaborated from the equivalent impedance matrix. Then, the analytical model of the C-shunt bridged-T topology voltage transfer function is established. The BP NGD analysis of the considered topology is developed in function of the bridged-T parameters. The NGD properties and characterizations of the proposed topology are analytically expressed. Moreover, the relevance of the BP NGD theory is verified with the design and fabrication of surface mounted device components-based proof-of-concept (PoC).
Findings
From measurement results, the BP NGD network with −151 ns at the center frequency of 1 MHz over −6.6 dB attenuation is in very good agreement with the C-shunt bridged-T PoC.
Originality/value
This paper develops a mathematical modeling theory and measurement of a C-shunt bridged-T network circuit.
Details
Keywords
Nour Mohammad Murad, Antonio Jaomiary, Samar Yazdani, Fayrouz Haddad, Mathieu Guerin, George Chan, Wenceslas Rahajandraibe and Sahbi Baccar
This paper aims to develop high-pass (HP) negative group delay (NGD) investigation based on three-port lumped circuit. The main particularity of the proposed three-port passive…
Abstract
Purpose
This paper aims to develop high-pass (HP) negative group delay (NGD) investigation based on three-port lumped circuit. The main particularity of the proposed three-port passive topology is the consideration of only a single circuit element represented by a capacitor.
Design/methodology/approach
The methodology of the paper is to consider the S-matrix equivalent model derived from admittance matrix approach. So, an S-matrix equivalent model of a three-port circuit topology is established from admittance matrix approach. The frequency-dependent basic expressions are explored to perform the HP-NGD analysis. Then, the existence condition of HP-NGD function type is analytically demonstrated. The specific characteristics and synthesis equations of HP-NGD circuit with respect to the desired optimal NGD value are established.
Findings
After computing the frequency expressions to perform the HP-NGD analysis, this study demonstrated the existence condition of HP-NGD function type analytically. The validity of the HP-NGD theory is verified by a prototype of three-port circuit. The proof-of-concept (POC) single capacitor three-port circuit presents an NGD response and characteristics from analytical calculation and simulation is in very good correlation.
Originality/value
An innovative theory of HP-NGD three-port circuit is studied. The proposed HP-NGD topology is constituted by only a single capacitor. After the topological description, the S-matrix model is established from the Y-matrix by means of Kirchhoff voltage law and Kirchhoff current law equations. A POC of single capacitor three-port circuit was designed and simulated with a commercial tool. Then, a prototype with a surface-mounted device component was fabricated and tested. As expected, simulation and measurement results in very good agreement with the calculated model show the feasibility of the HP-NGD behavior. This work is compared to other NGD-type function with diverse number of ports and components.