Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Available. Open Access. Open Access
Article
Publication date: 4 December 2018

Daxin Tian, Weiqiang Gong, Wenhao Liu, Xuting Duan, Yukai Zhu, Chao Liu and Xin Li

This paper aims to introduce vehicular network platform, routing and broadcasting methods and vehicular positioning enhancement technology, which are three aspects of the…

1805

Abstract

Purpose

This paper aims to introduce vehicular network platform, routing and broadcasting methods and vehicular positioning enhancement technology, which are three aspects of the applications of intelligent computing in vehicular networks. From this paper, the role of intelligent algorithm in the field of transportation and the vehicular networks can be understood.

Design/methodology/approach

In this paper, the authors introduce three different methods in three layers of vehicle networking, which are data cleaning based on machine learning, routing algorithm based on epidemic model and cooperative localization algorithm based on the connect vehicles.

Findings

In Section 2, a novel classification-based framework is proposed to efficiently assess the data quality and screen out the abnormal vehicles in database. In Section 3, the authors can find when traffic conditions varied from free flow to congestion, the number of message copies increased dramatically and the reachability also improved. The error of vehicle positioning is reduced by 35.39% based on the CV-IMM-EKF in Section 4. Finally, it can be concluded that the intelligent computing in the vehicle network system is effective, and it will improve the development of the car networking system.

Originality/value

This paper reviews the research of intelligent algorithms in three related areas of vehicle networking. In the field of vehicle networking, these research results are conducive to promoting data processing and algorithm optimization, and it may lay the foundation for the new methods.

Details

Journal of Intelligent and Connected Vehicles, vol. 1 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Access Restricted. View access options
Article
Publication date: 31 July 2024

Yongqing Ma, Yifeng Zheng, Wenjie Zhang, Baoya Wei, Ziqiong Lin, Weiqiang Liu and Zhehan Li

With the development of intelligent technology, deep learning has made significant progress and has been widely used in various fields. Deep learning is data-driven, and its…

48

Abstract

Purpose

With the development of intelligent technology, deep learning has made significant progress and has been widely used in various fields. Deep learning is data-driven, and its training process requires a large amount of data to improve model performance. However, labeled data is expensive and not readily available.

Design/methodology/approach

To address the above problem, researchers have integrated semi-supervised and deep learning, using a limited number of labeled data and many unlabeled data to train models. In this paper, Generative Adversarial Networks (GANs) are analyzed as an entry point. Firstly, we discuss the current research on GANs in image super-resolution applications, including supervised, unsupervised, and semi-supervised learning approaches. Secondly, based on semi-supervised learning, different optimization methods are introduced as an example of image classification. Eventually, experimental comparisons and analyses of existing semi-supervised optimization methods based on GANs will be performed.

Findings

Following the analysis of the selected studies, we summarize the problems that existed during the research process and propose future research directions.

Originality/value

This paper reviews and analyzes research on generative adversarial networks for image super-resolution and classification from various learning approaches. The comparative analysis of experimental results on current semi-supervised GAN optimizations is performed to provide a reference for further research.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 17 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 2 of 2
Per page
102050