Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 4 November 2020

Yi-Chun Chang, Kuan-Ting Lai, Seng-Cho T. Chou, Wei-Chuan Chiang and Yuan-Chen Lin

Telecommunication (telecom) fraud is one of the most common crimes and causes the greatest financial losses. To effectively eradicate fraud groups, the key fraudsters must be…

529

Abstract

Purpose

Telecommunication (telecom) fraud is one of the most common crimes and causes the greatest financial losses. To effectively eradicate fraud groups, the key fraudsters must be identified and captured. One strategy is to analyze the fraud interaction network using social network analysis. However, the underlying structures of fraud networks are different from those of common social networks, which makes traditional indicators such as centrality not directly applicable. Recently, a new line of research called deep random walk has emerged. These methods utilize random walks to explore local information and then apply deep learning algorithms to learn the representative feature vectors. Although effective for many types of networks, random walk is used for discovering local structural equivalence and does not consider the global properties of nodes.

Design/methodology/approach

The authors proposed a new method to combine the merits of deep random walk and social network analysis, which is called centrality-guided deep random walk. By using the centrality of nodes as edge weights, the authors’ biased random walks implicitly consider the global importance of nodes and can thus find key fraudster roles more accurately. To evaluate the authors’ algorithm, a real telecom fraud data set with around 562 fraudsters was built, which is the largest telecom fraud network to date.

Findings

The authors’ proposed method achieved better results than traditional centrality indices and various deep random walk algorithms and successfully identified key roles in a fraud network.

Research limitations/implications

The study used co-offending and flight record to construct a criminal network, more interpersonal relationships of fraudsters, such as friendships and relatives, can be included in the future.

Originality/value

This paper proposed a novel algorithm, centrality-guided deep random walk, and applied it to a new telecom fraud data set. Experimental results show that the authors’ method can successfully identify the key roles in a fraud group and outperform other baseline methods. To the best of the authors’ knowledge, it is the largest analysis of telecom fraud network to date.

Details

Data Technologies and Applications, vol. 55 no. 1
Type: Research Article
ISSN: 2514-9288

Keywords

1 – 1 of 1
Per page
102050