Rui Liu, Wanzhong Zhao, Zhenyu Wang and Xiaqing Liu
This study aims to contrastively investigate the effects of biodiesel and diesel on the power, economy and combustion characteristics of a compression ignition aviation piston…
Abstract
Purpose
This study aims to contrastively investigate the effects of biodiesel and diesel on the power, economy and combustion characteristics of a compression ignition aviation piston engine for unmanned aerial vehicles.
Design/methodology/approach
Biodiesel used as alternative fuel will not be mixed with diesel during experimental study. Pure diesel fuel is used for the comparative test. Same fuel injection strategies, including pilot and main injection, are guaranteed for two fuels in same test points.
Findings
The engine-rated power of biodiesel is lower than diesel, which results in higher specific fuel combustion (SFC) and effective thermal efficiency (ETE). Biodiesel has the faster burning rate, shorter combustion duration. The crank angle of 50% mass fraction burned (CA50) is earlier than diesel. The ignition delay angle of biodiesel and diesel in the pilot injection stage is almost the same at high engine speed. As the speed and load decrease, the ignition delay angle of biodiesel in the pilot injection stage is smaller than diesel. At 100% high load conditions, the fuel-burning fraction of biodiesel in the pilot injection is the same as diesel. The peak heat release rate (HRR) of biodiesel is slightly lower than diesel. At 20% part load conditions, the fuel-burning fraction of biodiesel in the pilot injection stage is lower than diesel. Because of the combustion participation of unburned pilot injected fuel, the peak HRR of biodiesel in the main injection is equal to or even higher than diesel.
Originality/value
The application feasibility of alternative fuel and its effects on aviation engine power, economy and combustion characteristics will be evaluated according to the “drop-in“ requirements and on the low-cost premise without changing the aviation engine structure and parameters.
Details
Keywords
Alberto Giubilini and Paolo Minetola
The purpose of this study is to evaluate the 3D printability of a multimaterial, fully self-supporting auxetic structure. This will contribute to expanding the application of…
Abstract
Purpose
The purpose of this study is to evaluate the 3D printability of a multimaterial, fully self-supporting auxetic structure. This will contribute to expanding the application of additive manufacturing (AM) to new products, such as automotive suspensions.
Design/methodology/approach
An experimental approach for sample fabrication on a multiextruder 3D printer and characterization by compression testing was conducted along with numerical simulations, which were used to support the design of different auxetic configurations for the jounce bumper.
Findings
The effect of stacking different auxetic cell modules was discussed, and the findings demonstrated that a one-piece printed structure has a better performance than one composed of multiple single modules stacked on top of each other.
Research limitations/implications
The quality of the 3D printing process affected the performance of the final components and reproducibility of the results. Therefore, researchers are encouraged to further study component fabrication optimization to achieve a more reliable process.
Practical implications
This research work can help improve the manufacturing and functionality of a critical element of automotive suspension systems, such as the jounce bumper, which can efficiently reduce noise, vibration and harshness by absorbing impact energy.
Originality/value
In previous research, auxetic structures for the application of jounce bumpers have already been suggested. However, to the best of the authors’ knowledge, in this work, an AM approach was used for the first time to fabricate multimaterial auxetic structures, not only by co-printing a flexible thermoplastic polymer with a stiffer one but also by continuously extruding multilevel structures of auxetic cell modules.