Ziqiang Cui, Qi Wang, Qian Xue, Wenru Fan, Lingling Zhang, Zhang Cao, Benyuan Sun, Huaxiang Wang and Wuqiang Yang
Electrical capacitance tomography (ECT) and electrical resistance tomography (ERT) are promising techniques for multiphase flow measurement due to their high speed, low cost…
Abstract
Purpose
Electrical capacitance tomography (ECT) and electrical resistance tomography (ERT) are promising techniques for multiphase flow measurement due to their high speed, low cost, non-invasive and visualization features. There are two major difficulties in image reconstruction for ECT and ERT: the “soft-field”effect, and the ill-posedness of the inverse problem, which includes two problems: under-determined problem and the solution is not stable, i.e. is very sensitive to measurement errors and noise. This paper aims to summarize and evaluate various reconstruction algorithms which have been studied and developed in the word for many years and to provide reference for further research and application.
Design/methodology/approach
In the past 10 years, various image reconstruction algorithms have been developed to deal with these problems, including in the field of industrial multi-phase flow measurement and biological medical diagnosis.
Findings
This paper reviews existing image reconstruction algorithms and the new algorithms proposed by the authors for electrical capacitance tomography and electrical resistance tomography in multi-phase flow measurement and biological medical diagnosis.
Originality/value
The authors systematically summarize and evaluate various reconstruction algorithms which have been studied and developed in the word for many years and to provide valuable reference for practical applications.
Details
Keywords
With numerous and ambiguous sets of information and often conflicting requirements, construction management is a complex process involving much uncertainty. Decision makers may be…
Abstract
With numerous and ambiguous sets of information and often conflicting requirements, construction management is a complex process involving much uncertainty. Decision makers may be challenged with satisfying multiple criteria using vague information. Fuzzy multi-criteria decision-making (FMCDM) provides an innovative approach for addressing complex problems featuring diverse decision makers’ interests, conflicting objectives and numerous but uncertain bits of information. FMCDM has therefore been widely applied in construction management. With the increase in information complexity, extensions of fuzzy set (FS) theory have been generated and adopted to improve its capacity to address this complexity. Examples include hesitant FSs (HFSs), intuitionistic FSs (IFSs) and type-2 FSs (T2FSs). This chapter introduces commonly used FMCDM methods, examines their applications in construction management and discusses trends in future research and application. The chapter first introduces the MCDM process as well as FS theory and its three main extensions, namely, HFSs, IFSs and T2FSs. The chapter then explores the linkage between FS theory and its extensions and MCDM approaches. In total, 17 FMCDM methods are reviewed and two FMCDM methods (i.e. T2FS-TOPSIS and T2FS-PROMETHEE) are further improved based on the literature. These 19 FMCDM methods with their corresponding applications in construction management are discussed in a systematic manner. This review and development of FS theory and its extensions should help both researchers and practitioners better understand and handle information uncertainty in complex decision problems.
Details
Keywords
Qiang Wang, Chen Meng and Cheng Wang
This study aims to reveal the essential characteristics of nonstationary signals and explore the high-concentration representation in the joint time–frequency (TF) plane.
Abstract
Purpose
This study aims to reveal the essential characteristics of nonstationary signals and explore the high-concentration representation in the joint time–frequency (TF) plane.
Design/methodology/approach
In this paper, the authors consider the effective TF analysis for nonstationary signals consisting of multiple components.
Findings
To make it, the authors propose the combined multi-window Gabor transform (CMGT) under the scheme of multi-window Gabor transform by introducing the combination operator. The authors establish the completeness utilizing the discrete piecewise Zak transform and provide the perfect-reconstruction conditions with respect to combined TF coefficients. The high-concentration is achieved by optimization. The authors establish the optimization function with considerations of TF concentration and computational complexity. Based on Bergman formulation, the iteration process is further analyzed to obtain the optimal solution.
Originality/value
With numerical experiments, it is verified that the proposed CMGT performs better in TF analysis for multi-component nonstationary signals.
Details
Keywords
Hongbin Li, Nina Sun and Zhihao Wang
This study aims to improve the positioning accuracy of a large-scale parallel pose alignment mechanism by calibration and error compensation.
Abstract
Purpose
This study aims to improve the positioning accuracy of a large-scale parallel pose alignment mechanism by calibration and error compensation.
Design/methodology/approach
The dynamic modelling of the parallel pose alignment mechanism is achieved using the Newton Euler method. Combined with a deformation compatibility analysis, the support force at the spherical hinge and the friction of the follow-up prismatic pair are calculated. The deformation of the moving platform in multi-pose space is analysed by the integral method, and a corresponding deformation model is established. Based on the calculated support force, friction and deformation, the deformation error is analysed. Combined with the calculated deformation error, kinematics calibration and positioning error compensation are carried out.
Findings
The simulation results show that the deviation of structural error identification is decreased from 3.03 × 10–1 mm to 6.8 × 10–2 mm. The experimental results show that the maximum pose errors after compensation are reduced from 2.77 mm to 6.5 × 10–1° to 3.9 × 10–1 mm and 3.7 × 10–1°, which verifies the effectiveness of the proposed method.
Originality/value
This method can be used in the field of aircraft assembly for the calibration and error compensation of a large-scale parallel pose alignment mechanism based on positioners.
Details
Keywords
Zhihao Wang, Wenliang Chen, Min Wang, Qinghe Xu and Can Huang
The purpose of this study is to improve the position and posture accuracy of posture alignment mechanism. The automatic drilling and riveting machine is an important equipment for…
Abstract
Purpose
The purpose of this study is to improve the position and posture accuracy of posture alignment mechanism. The automatic drilling and riveting machine is an important equipment for aircraft assembly. The alignment accuracy of position and posture of the bracket type posture alignment mechanism has a great influence on the operation effect of the machine. Therefore, it is necessary to carry out the kinematic calibration.
Design/methodology/approach
Based on analysis of elastic deformation of the bracket and geometric errors of the posture alignment mechanism, an improved method of kinematic calibration was proposed. The position and posture errors of bracket caused by geometric errors were separated from those caused by gravity. The method of reduction of dimensions was applied to deal with the error coefficient matrix in error identification, and it did not change the coefficient of the error terms. The target position and its posture were corrected to improve the error compensation accuracy. Furthermore, numerical simulation and experimental verification were carried out.
Findings
The simulation and experimental results show that considering the influence of the elastic deformation of the bracket on the calibration effect, the error identification accuracy and compensation accuracy can be improved. The maximum value of position error is reduced from 5.33 mm to 1.60 × 10−1 mm and the maximum value of posture error is reduced from 1.07 × 10−3 rad to 6.02 × 10−4 rad, which is superior to the accuracy without considering the gravity factor.
Originality/value
This paper presents a calibration method considering the effects of geometric errors and gravity. By separating position and posture errors caused by different factors and correcting the target position and its posture, the results of the calibration method are greatly improved. The proposed method might be applied to any parallel mechanism based on the positioner.
Details
Keywords
Yongjiang Xue, Wei Wang and Qingzeng Song
The primary objective of this study is to tackle the enduring challenge of preserving feature integrity during the manipulation of geometric data in computer graphics. Our work…
Abstract
Purpose
The primary objective of this study is to tackle the enduring challenge of preserving feature integrity during the manipulation of geometric data in computer graphics. Our work aims to introduce and validate a variational sparse diffusion model that enhances the capability to maintain the definition of sharp features within meshes throughout complex processing tasks such as segmentation and repair.
Design/methodology/approach
We developed a variational sparse diffusion model that integrates a high-order L1 regularization framework with Dirichlet boundary constraints, specifically designed to preserve edge definition. This model employs an innovative vertex updating strategy that optimizes the quality of mesh repairs. We leverage the augmented Lagrangian method to address the computational challenges inherent in this approach, enabling effective management of the trade-off between diffusion strength and feature preservation. Our methodology involves a detailed analysis of segmentation and repair processes, focusing on maintaining the acuity of features on triangulated surfaces.
Findings
Our findings indicate that the proposed variational sparse diffusion model significantly outperforms traditional smooth diffusion methods in preserving sharp features during mesh processing. The model ensures the delineation of clear boundaries in mesh segmentation and achieves high-fidelity restoration of deteriorated meshes in repair tasks. The innovative vertex updating strategy within the model contributes to enhanced mesh quality post-repair. Empirical evaluations demonstrate that our approach maintains the integrity of original, sharp features more effectively, especially in complex geometries with intricate detail.
Originality/value
The originality of this research lies in the novel application of a high-order L1 regularization framework to the field of mesh processing, a method not conventionally applied in this context. The value of our work is in providing a robust solution to the problem of feature degradation during the mesh manipulation process. Our model’s unique vertex updating strategy and the use of the augmented Lagrangian method for optimization are distinctive contributions that enhance the state-of-the-art in geometry processing. The empirical success of our model in preserving features during mesh segmentation and repair presents an advancement in computer graphics, offering practical benefits to both academic research and industry applications.
Details
Keywords
Wujiu Pan, Heng Ma, Jian Li, Qilong Wu, Junyi Wang, Jianwen Bao, Lele Sun and Peng Gao
Aero-engine casings commonly use composite cylindrical shell structures with excellent properties such as corrosion resistance and fatigue resistance. Still, their vibration…
Abstract
Purpose
Aero-engine casings commonly use composite cylindrical shell structures with excellent properties such as corrosion resistance and fatigue resistance. Still, their vibration behavior is relatively complex and may cause fatigue vibration damage, so it is essential to analyze the vibration characteristics of composite cylindrical shells. The purpose of this paper is to analyze the vibration characteristics of multilayer composite cylindrical shells subjected to external pressures and having different interlayer thickness ratios and provide some theoretical basis for the fatigue damage prediction of cylindrical shell casing to ensure the safety and stability of the engine during flight.
Design/methodology/approach
Firstly, the vibration differential equation with external pressure is established based on Soedel theory considering nonlinear effects, while four symmetric boundary conditions are chosen to constrain the cylindrical shell. Then the Rayleigh–Ritz method, which is more efficient and accurate in calculating large structural systems, is applied to solve the problem, and the theoretical model of three-layer cylindrical shell under external pressure is established. The accuracy of the model is verified by comparing the data with the specialized literature. Subsequently, the effects of different external pressures and different thickness-to-diameter ratios, different length-to-diameter ratios and different interlayer thickness percentages on the natural frequency of multilayer composite cylindrical shells were investigated by control variable analysis.
Findings
The conclusions obtained show that the external pressure increases the natural frequency of the cylindrical shell and that the frequency characteristics of the cylindrical shell vary for different boundary conditions. The effect of length-to-diameter ratio, thickness-to-diameter ratio and the percentage of the thickness of the intermediate layer on the natural frequency of the cylindrical shell are significantly increased under external pressure. Because the presence of external pressure increases the frequency of the cylindrical shell by about 70%, it has almost no effect on the frequency at the minimum number of circumferential waves, and the effect on the frequency at the maximum number of circumferential waves is reduced to about 50%. The frequencies in the SL-SL boundary condition are all in perfect agreement with the S-S boundary condition under the influence of different influencing factors.
Originality/value
In this paper, the effect of external pressure and the natural properties of the cylindrical shell under external pressure on the cylindrical shell’s frequency is considered, emphasizing the effect of different layer thickness ratios on the frequency. This paper aims to summarize the changing law between the natural frequency of the cylindrical shell itself and different design parameters during the flight pressure process. Reliable theoretical predictions are provided for analyzing the vibrational behavior of shells subjected to external pressures in aerospace, as well as a database for the practical production of cylindrical shells.
Details
Keywords
Abstract
Purpose
This papers aims to provide a fixed cutter axis control (F-CAC) industrial robot (IR) milling for NURBS surfaces with large fluctuation, which can avoid over-cut and interference during IR milling in contrast to variable cutter axis control (V-CAC) IR milling.
Design/methodology/approach
After the design of a target surface, the IR reciprocating milling trajectory can be obtained using NURBS mapping projection method. A set of interpolation points of the reciprocating trajectory can be calculated using the equi-chord interpolation method. Combining with F-CAC method and curvature estimation, the IR reciprocating trajectory of the tool center point (TCP) without over-cut can be obtained. The programs corresponding to posture control using F-CAC can be generated by IR kinematics.
Findings
In contrast to the V-CAC milling method, the F-CAC method can machine successfully the NURBS surfaces with large fluctuation. The simulation and machining proves that F-CAC is feasible and effective to machine NURBS surface with large fluctuation without over-cut phenomenon. The F-CAC has wide application in carving and woodworking industry at present.
Originality/value
The F-CAC method is very practical and effective for IR milling of complex NURBS surfaces with large fluctuation without over-cut and interference phenomenon.
Details
Keywords
Qiang Li, Shuo Zhang, Yujun Wang, Wei-Wei Xu, Zengli Wang and Zhenbo Wang
Shear stresses have a considerable influence on the characteristics of lubricants and become significant at high rotating speeds. This study aims to investigate the influences of…
Abstract
Purpose
Shear stresses have a considerable influence on the characteristics of lubricants and become significant at high rotating speeds. This study aims to investigate the influences of shear cavitation (SC) on loading capacity of journal bearings.
Design/methodology/approach
A principal normal stress cavitation criterion based on the stress applied to flowing lubricant in journal bearings is developed and used to investigate SC in journal bearings. A computational fluid dynamic (CFD) model for calculating the loading capacity is established using this criterion. After validation with experimental results, the loading capacity is calculated under different conditions.
Findings
The calculation results indicate that SC intensifies when viscosity, speed and eccentricity increase. Angle of loading capacity with SC is larger than that without SC. The magnitude of loading capacity with SC is smaller than that without SC due to the decrease in the ultimate pressure. In addition, the magnitude difference between the loading capacity with and without SC increases when viscosity, speed and eccentricity increases.
Originality/value
Present research can provide some guidance for calculating the loading capacity when a journal bearing is operating at high speed or with a high viscosity lubricant.
Details
Keywords
Gerasimos G. Rigatos, Masoud Abbaszadeh, Pierluigi Siano and Jorge Pomares
Permanent magnet synchronous spherical motors can have wide use in robotics and industrial automation. They enable three-DOF omnidirectional motion of their rotor. They are…
Abstract
Purpose
Permanent magnet synchronous spherical motors can have wide use in robotics and industrial automation. They enable three-DOF omnidirectional motion of their rotor. They are suitable for several applications, such as actuation in robotics, traction in electric vehicles and use in several automation systems. Unlike conventional synchronous motors, permanent magnet synchronous spherical motors consist of a fixed inner shell, which is the stator, and a rotating outer shell, which is the rotor. Their dynamic model is multivariable and strongly nonlinear. The treatment of the associated control problem is important.
Design/methodology/approach
In this paper, the multivariable dynamic model of permanent magnet synchronous spherical motors is analysed, and a nonlinear optimal (H-infinity) control method is developed for it. Differential flatness properties are proven for the spherical motors’ state-space model. Next, the motors’ state-space description undergoes approximate linearization with the use of first-order Taylor series expansion and through the computation of the associated Jacobian matrices. The linearization process takes place at each sampling instance around a time-varying operating point, which is defined by the present value of the motors’ state vector and by the last sampled value of the control input vector. For the approximately linearized model of the permanent magnet synchronous spherical motors, a stabilizing H-infinity feedback controller is designed. To compute the controller’s gains, an algebraic Riccati equation has to be repetitively solved at each time-step of the control algorithm. The global stability properties of the control scheme are proven through Lyapunov analysis. Finally, the performance of the nonlinear optimal control method is compared against a flatness-based control approach implemented in successive loops.
Findings
Due to the nonlinear and multivariable structure of the state-space model of spherical motors, the solution of the associated nonlinear control problem is a nontrivial task. In this paper, a novel nonlinear optimal (H-infinity) control approach is proposed for the dynamic model of permanent magnet synchronous spherical motors. The method is based on approximate linearization of the motor’s state-space model with the use of first-order Taylor series expansion and the computation of the associated Jacobian matrices. Furthermore, the paper has introduced a different solution to the nonlinear control problem of the permanent magnet synchronous spherical motor, which is based on flatness-based control implemented in successive loops.
Research limitations/implications
The presented control approaches do not exhibit any limitations, but on the contrary, they have specific advantages. In comparison to global linearization-based control schemes (such as Lie-algebra-based control), they do not make use of complicated changes of state variables (diffeomorphisms) and transformations of the system's state-space description. The computed control inputs are applied directly to the initial nonlinear state-space model of the permanent magnet spherical motor without the intervention of inverse transformations and thus without coming against the risk of singularities.
Practical implications
The motion control problem of spherical motors is nontrivial because of the complicated nonlinear and multivariable dynamics of these electric machines. So far, there have been several attempts to apply nonlinear feedback control to permanent magnet-synchronous spherical motors. However, due to the model’s complexity, few results exist about the associated nonlinear optimal control problem. The proposed nonlinear control methods for permanent magnet synchronous spherical motors make more efficient, precise and reliable the use of such motors in robotics, electric traction and several automation systems.
Social implications
The treated research topic is central for robotic and industrial automation. Permanent magnet synchronous spherical motors are suitable for several applications, such as actuation in robotics, traction in electric vehicles and use in several automation systems. The solution of the control problem for the nonlinear dynamic model of permanent magnet synchronous spherical motors has many industrial applications and therefore contributes to economic growth and development.
Originality/value
The proposed nonlinear optimal control method is novel compared to past attempts to solve the optimal control problem for nonlinear dynamical systems. Unlike past approaches, in the new nonlinear optimal control method, linearization is performed around a temporary operating point, which is defined by the present value of the system's state vector and by the last sampled value of the control inputs vector and not at points that belong to the desirable trajectory (setpoints). Besides, the Riccati equation which is used for computing the feedback gains of the controller is new, and so is the global stability proof for this control method. Compared to nonlinear model predictive control, which is a popular approach for treating the optimal control problem in industry, the new nonlinear optimal (H-infinity) control scheme is of proven global stability, and the convergence of its iterative search for the optimum does not depend on initial conditions and trials with multiple sets of controller parameters. It is also noteworthy that the nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state dependent Riccati equations (SDRE). The SDRE approaches can be applied only to dynamical systems which can be transformed into the linear parameter varying form. Besides, the nonlinear optimal control method performs better than nonlinear optimal control schemes, which use approximation of the solution of the Hamilton–Jacobi–Bellman equation by Galerkin series expansions. Furthermore, the second control method proposed in this paper, which is flatness-based control in successive loops, is also novel and demonstrates substantial contribution to nonlinear control for robotics and industrial automation.