Search results

1 – 3 of 3
Open Access
Article
Publication date: 11 April 2018

Hassan M. Al-Ahmadi, Wael S. Alhalabi, Rezqallah Hasan Malkawi and Imran Reza

The purpose of this study is to analyze the crowd dynamics of the visitors at Al-Masjid al-Nabawi during the most oversaturated period to characterize the most critical conditions…

8664

Abstract

Purpose

The purpose of this study is to analyze the crowd dynamics of the visitors at Al-Masjid al-Nabawi during the most oversaturated period to characterize the most critical conditions and suggest technical solutions to accommodate visitors and provide them safe passage.

Design/methodology/approach

In this study, the time of entrance from the Al-Salam Gate to the tomb and from the tomb to the exit from the Al-Baqi’ Gate has been collected in the most oversaturated period. To be precise and to model the worst case, important crowd measures of effectiveness data are collected in the two holiest times considered by Muslims, during the holy month of Ramadan and the month of Dhul-Hijjah and during the busiest hours of the day to consider safety factors while proposing future solutions. The conventional manual head-counting method has been adopted to determine the crowd density and to carry out actual counting of the visitors from the recorded videos and photos captured by the legitimate authority.

Findings

The analyses revealed that the crowd dynamics in the month of Ramadan (peak) are statistically different from those for other times (off peak). In general, the crowd dynamics at all times on days other than Ramadan are almost identical.

Originality/value

The results of crowd characterization from this study are expected to help optimize crowd management in the Masjid at the most critical location and time. The data collected in this study could be used for future research to simulate similar crowd scenes or for even different crowd management scenarios in case of emergencies such as fire hazards or evacuation process.

Details

International Journal of Crowd Science, vol. 2 no. 1
Type: Research Article
ISSN: 2398-7294

Keywords

Content available
Book part
Publication date: 22 November 2024

Abstract

Details

The Emerald Handbook of Smart Cities in the Gulf Region: Innovation, Development, Transformation, and Prosperity for Vision 2040
Type: Book
ISBN: 978-1-83608-292-7

Article
Publication date: 21 December 2021

Yousra Ghazaoui, Mohammed EL Ghzaoui, Sudipta Das, BTP Madhav and Ali el Alami

This paper aims to present the design, fabrication and analysis of a wideband, enhanced gain 1 × 2 patch antenna array with a simple profile structure to meet the desired antenna…

Abstract

Purpose

This paper aims to present the design, fabrication and analysis of a wideband, enhanced gain 1 × 2 patch antenna array with a simple profile structure to meet the desired antenna traits, such as wide bandwidth, high gain and directional patterns expected for the upcoming fifth-generation (5G) wireless applications in the millimeter wave band. To enhance these parameters (bandwidth and gain), a new antenna geometry by using a T-junction power divider is presented.

Design/methodology/approach

The theory behind this paper is connected with advancements in the 5G communications related to antennas. The methodology used in this work is to design a high gain array antenna and to identify the best possible power divider to deliver the power in an optimized way. The design methodology adopts several steps like the selection of proper substrate material as per the design specification, size of the antenna as per the frequency of operation and application-specific environment condition. The simulation has been performed on the designed antenna in the electromagnetic simulation tool (high-frequency structure simulator [HFSS]), and optimization has been done with parametric analysis, and then the final array antenna model is proposed. The proposed array contains 2-patch elements excited by one port adapted to 50 Ω through a T-junction power divider. The 1 × 2 array configuration with the suggested geometry helps to improve the overall gain of the antenna, and the implementation of the T-junction power divider provides enhanced bandwidth. The proposed array designed using a 1.6 mm thick flame retardant substrate occupies a compact area of 14 × 12.14 mm2.

Findings

The prototype of the array antenna is fabricated and measured to validate the design concept. A good agreement has been reached between the measured and simulated antenna parameters. The measured results confirm its wideband and high gain characteristics, covering 24.77–28.80 GHz for S11= –10 dB with a peak gain of about 15.16 dB at 27.65 GHz.

Originality/value

The proposed antenna covers the bandwidth requirements of the 26 GHz n258 band (24.25–27.50 GHz) to be deployed in the UK and Europe. The suggested antenna structure also covers the federal communications commission (FCC)-regulated 28 GHz n261 band (27.5–28.35 GHz) to be deployed in America and Canada. The low profile, compact size, simple structure, wide bandwidth, high gain and desired directional radiation patterns confirm the applicability of the suggested array antenna for the upcoming 5 G wireless systems.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 3 of 3