Search results

1 – 10 of over 2000
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 10 December 2019

Fei Wang, Yuqiang Liu, Yahui Zhang, Yu Gao, Ling Xiao and Chengdong Wu

A robotic wheelchair system was designed to assist disabled people with disabilities to walk.

208

Abstract

Purpose

A robotic wheelchair system was designed to assist disabled people with disabilities to walk.

Design/methodology/approach

An anticipated sharing control strategy based on topological map is proposed in this paper, which is used to assist robotic wheelchairs to realize interactive navigation. Then, a robotic wheelchair navigation control system based on the brain-computer interface and topological map was designed and implemented.

Findings

In the field of robotic wheelchairs, the problems of poor use, narrow application range and low humanization are still not improved.

Originality/value

In the system, the topological map construction is not restricted by the environment structure, which helps to expand the scope of application; the shared control system can predict the users’ intention and replace the users’ decision to realize human-machine interactive navigation, which has higher security, robustness and comfort.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Access Restricted. View access options
Article
Publication date: 8 July 2022

Da Teng, Yun-Wen Feng, Jun-Yu Chen and Cheng Lu

The purpose of this paper is to briefly summarize and review the theories and methods of complex structures’ dynamic reliability. Complex structures are usually assembled from…

749

Abstract

Purpose

The purpose of this paper is to briefly summarize and review the theories and methods of complex structures’ dynamic reliability. Complex structures are usually assembled from multiple components and subjected to time-varying loads of aerodynamic, structural, thermal and other physical fields; its reliability analysis is of great significance to ensure the safe operation of large-scale equipment such as aviation and machinery.

Design/methodology/approach

In this paper for the single-objective dynamic reliability analysis of complex structures, the calculation can be categorized into Monte Carlo (MC), outcrossing rate, envelope functions and extreme value methods. The series-parallel and expansion methods, multi-extremum surrogate models and decomposed-coordinated surrogate models are summarized for the multiobjective dynamic reliability analysis of complex structures.

Findings

The numerical complex compound function and turbine blisk are used as examples to illustrate the performance of single-objective and multiobjective dynamic reliability analysis methods. Then the future development direction of dynamic reliability analysis of complex structures is prospected.

Originality/value

The paper provides a useful reference for further theoretical research and engineering application.

Details

International Journal of Structural Integrity, vol. 13 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Access Restricted. View access options
Article
Publication date: 7 March 2016

M.M.J. Al-ani and Z.Q. Zhu

– The paper purposes a novel SFPM machine topology with radial and circumferential permanent magnets (PMs). The paper aims to discuss this issue.

186

Abstract

Purpose

The paper purposes a novel SFPM machine topology with radial and circumferential permanent magnets (PMs). The paper aims to discuss this issue.

Design/methodology/approach

In order to reduce the flux leakage in the stator-outer region and consequently achieve higher magnetic material utilization in switched flux permanent magnet (SFPM) machine, a novel topology with radial and circumferential PMs is proposed. This topology (SFRCPM) has the same structure as conventional SFPM (CSFPM) machine except of the additional set of radially magnetized PMs located around the back iron and surrounded by a laminated ring frame. Using finite element analysis (FEA) the influence of the design parameters on the performance is investigated in order to obtain an effective optimization procedure. Internal and external rotor SFRCPM machines with either NdFeB or ferrite magnets are investigated, optimized and compared with the CSFPM machine having the same size, copper loss and stator/rotor pole combination.

Findings

It is concluded that comparing SFRCPM with its CSFPM machine counterpart, internal rotor SFRCPM machine can achieve high PM flux-linkage per magnet volume, however reduced slot area leads to low output torque, whereas external rotor SFRCPM machine can produce higher torque and torque per magnet volume.

Originality/value

This paper proposes a novel SFPM machine topology.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Available. Content available
Book part
Publication date: 9 September 2024

Muhammad Hassan Raza

Free Access. Free Access

Abstract

Details

The Multilevel Community Engagement Model
Type: Book
ISBN: 978-1-83797-698-0

Access Restricted. View access options
Article
Publication date: 1 January 2012

C.F. Wang, J.X. Shen, P.C.K. Luk, W.Z. Fei and M.J. Jin

The purpose of this paper is to present the design procedure of an interior permanent magnet (IPM) motor used in electric power steering (EPS), and some critical issues which have…

552

Abstract

Purpose

The purpose of this paper is to present the design procedure of an interior permanent magnet (IPM) motor used in electric power steering (EPS), and some critical issues which have considerable impacts on the machine's performance are fully discussed before detailed sizing optimization.

Design/methodology/approach

The design specifications are derived according to application overall requirements. Critical issues which have considerable impacts on the machine's performance, such as operation mode, rotor structure and slot/pole combination, are analyzed based on literature review. The proposed machine is optimized, and the losses and efficiency are computed, using 2‐D finite element analysis (FEA).

Findings

Before detailed sizing optimization, machine type selection is fully discussed. Aspects such as brushless ac (BLAC) operation mode, IPM rotor structure and combination of 12‐slot/10‐pole are quite suitable for EPS application. Consequently, a 12‐slot/10‐pole sinusoidally excited IPM machine with concentrated windings is selected, since it is convenient to obtain sinusoidal back electromotive force (back‐EMF), minimum cogging torque and torque ripple, short end windings and high efficiency, as well as simple rotor assembly. The estimated excellent performance confirms that the proposed machine can be an attractive solution for EPS.

Research limitations/implications

The excitation current is ideal sinusoidal, while some harmonic components are neglected. Besides, in future, the experimental test should be carried out for validation.

Originality/value

A reasonable design procedure, where the motor type selection should be first addressed before detailed sizing design, is carried out. A 12‐slot/10‐pole sinusoidally excited IPM machine with concentrated windings is provided as a quite competitive candidate for EPS application.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 4 January 2011

Wei‐Zhong Fei, Jian‐Xin Shen, Can‐Fei Wang and Patrick Chi‐Kwong Luk

The purpose of this paper is to propose a new outer‐rotor permanent‐magnet flux‐switching machine (ORPMFSM) for electric vehicle (EV) in‐wheel propulsion. The paper documents both…

526

Abstract

Purpose

The purpose of this paper is to propose a new outer‐rotor permanent‐magnet flux‐switching machine (ORPMFSM) for electric vehicle (EV) in‐wheel propulsion. The paper documents both the design procedure and performance investigation of this novel machine.

Design/methodology/approach

The topology and preliminary sizing equations of the ORPMFSM are introduced. The rotor poles are optimized, whilst the machine losses are particularly investigated, using 2‐D finite element analysis (FEA).

Findings

An ORPMFSM, with 12 stator poles and 22 rotor poles, is most suitable for the proposed EV application. The analytical sizing equations are quite efficient with a sufficient accuracy for the preliminary design. The optimal rotor pole width from the FEA results is nearly 1.3 times the original value which was proposed in early literatures. The efficiency of the proposed machine under rated load is slightly low, as a result of significant eddy current losses in the permanent magnets. The losses can be effectively suppressed with the technique of magnet segmenting. The predicted outstanding performance implies that by adopting magnet segmentation the proposed machine is a leading contender for EV direct drives.

Originality/value

The outer‐rotor structure of PMFSM was not addressed in early literatures. This paper provides designers with the technical background and an alternative candidate for the EV propulsion.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 7 March 2016

M,M.J, Al-ani and Z.Q. Zhu

The purpose of this paper is to investigate and compare the influence of end-effect on the torque-speed characteristics of three conventional switched flux permanent magnet (SFPM…

173

Abstract

Purpose

The purpose of this paper is to investigate and compare the influence of end-effect on the torque-speed characteristics of three conventional switched flux permanent magnet (SFPM) machines having different stator/rotor pole combinations, i.e. 12/10, 12/13 and 12/14 as well as three novel topologies with less permanent magnets (PMs), i.e. multi-tooth, E-core and C-core.

Design/methodology/approach

SFPM machines combine the advantages of simple and robust rotor and easy management of the temperature due to the location of the PMs and armature windings on the stator. However, due to spoke location of the PMs a large flux leakage in the end region, i.e. end-effect, can be observed which could result in a large reduction in the electromagnetic performance. Therefore, the influence of end-effect on the torque-speed characteristics is investigated. 3D-finite element analyses (FEA) results are compared with their 2D-FEA counterparts in order to account for the end-effect influence.

Findings

It has been concluded that due to end flux leakage, lower torque capability in the constant torque region is observed in the six machines. However, improved flux-weakening capability in the conventional machines can be exhibited at high current levels, whereas due to the large inductance lower power capability in the multi-tooth, E-core and C-core machines is obtained.

Research limitations/implications

The influence of temperature rise on the performance is not included.

Originality/value

This paper has analysed the influence of end-effect on the torque-speed characteristics of several SFPM machines.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 7 November 2023

Shun-Peng Zhu, Xiaopeng Niu, Behrooz Keshtegar, Changqi Luo and Mansour Bagheri

The multisource uncertainties, including material dispersion, load fluctuation and geometrical tolerance, have crucial effects on fatigue performance of turbine bladed disks. In…

190

Abstract

Purpose

The multisource uncertainties, including material dispersion, load fluctuation and geometrical tolerance, have crucial effects on fatigue performance of turbine bladed disks. In view of the aim of this paper, it is essential to develop an advanced approach to efficiently quantify their influences and evaluate the fatigue life of turbine bladed disks.

Design/methodology/approach

In this study, a novel combined machine learning strategy is performed to fatigue assessment of turbine bladed disks. Proposed model consists of two modeling phases in terms of response surface method (RSM) and support vector regression (SVR), namely RSM-SVR. Two different input sets obtained from basic variables were used as the inputs of RSM, then the predicted results by RSM in first phase is used as inputs of SVR model by using a group data-handling strategy. By this way, the nonlinear flexibility of SVR inputs is improved and RSM-SVR model presents the high-tendency and efficiency characteristics.

Findings

The accuracy and tendency of the RSM-SVR model, applied to the fatigue life estimation of turbine bladed disks, are validated. The results indicate that the proposed model is capable of accurately simulating the nonlinear response of turbine bladed disks under multisource uncertainties, and SVR-RSM model provides an accurate prediction strategy compared to RSM and SVR for fatigue analysis of complex structures.

Originality/value

The results indicate that the proposed model is capable of accurately simulate the nonlinear response of turbine bladed disks under multisource uncertainties, and SVR-RSM model provides an accurate prediction compared to RSM and SVRE for fatigue analysis of turbine bladed disk.

Details

International Journal of Structural Integrity, vol. 14 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Access Restricted. View access options
Article
Publication date: 2 November 2015

Qinfen Lu, Yanxin Li, Yunyue Ye, J.T. Chen and Z.Q. Zhu

Due to linear structure, linear switched flux permanent magnet machines (LSFPMMs) also may have odd pole primary, such as 9, 15, 21, etc., without unbalanced magnetic force in…

212

Abstract

Purpose

Due to linear structure, linear switched flux permanent magnet machines (LSFPMMs) also may have odd pole primary, such as 9, 15, 21, etc., without unbalanced magnetic force in equivalent rotary machines. The paper aims to discuss these issues.

Design/methodology/approach

In order to increase the thrust force density, the influence of some major design parameters, including split ratio, PM thickness, primary slot width and secondary pole width, are investigated by finite element analysis. For reducing the thrust force ripple under on-load condition, the end auxiliary teeth are adopted and their positions are also optimized.

Findings

This novel 9/10 primary/secondary poles LSFPMM has high average thrust force and low thrust force ripple by optimization. The results demonstrate that the odd pole primary may be a good candidate for long-stroke linear direct drive application.

Originality/value

A novel 9/10 primary/secondary poles linear switched flux permanent magnet machine is developed in this paper. The similar conclusions could be obtained for other LSFPMMs with odd pole primary.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 3 May 2013

Hong Li, Fei Lin, Zhong Li, Xiajie You, Trillion Q. Zheng and Bo Zhang

Four‐quadrant AC‐DC converters are one kind of the most common and popular AC‐DC converters, which are serious EMI sources. The purpose of this paper is to propose a novel control…

402

Abstract

Purpose

Four‐quadrant AC‐DC converters are one kind of the most common and popular AC‐DC converters, which are serious EMI sources. The purpose of this paper is to propose a novel control for four‐quadrant AC‐DC converters to suppress the generated electromagnetic interference (EMI).

Design/methodology/approach

A chaotic carrier plays an important role to implement the chaotic PWM control. The relationship between the EMI distribution and carrier frequency is given by deducing and analyzing the harmonic components of the AC‐DC converter. The comparison of chaotic PWM control and random PWM control in suppressing EMI are provided.

Findings

The simulation results prove the effectiveness of the proposed chaotic PWM control on EMI reduction.

Research limitations/implications

The effects of EMI suppression under different chaotic carriers will be theoretically analyzed in the future work.

Practical implications

The proposed chaotic PWM control can suppress EMI for converters without adding additional devices or components, therefore, without increasing the volume, weight and cost of converters.

Originality/value

In this paper, a novel chaotic pulse width modulation (PWM) control is proposed and implemented into a four‐quadrant AC‐DC converter for electromagnetic interference (EMI) suppression, moreover, the total harmonic distortion (THD) of the input AC current is also improved under chaotic PWM control.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 2000
Per page
102050