Search results

1 – 5 of 5
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 1 February 1985

A.W.A. Reeve, W.M. Hofmann and W. Bachofner

In recent years, many different claims have been made about reducing the cost of running an office building by installing some proprietary energy‐saving system or another. Yet…

401

Abstract

In recent years, many different claims have been made about reducing the cost of running an office building by installing some proprietary energy‐saving system or another. Yet, even where these claims have been advanced in good faith, they have usually been based solely upon theoretical calculations. Very rarely have they been based upon practical measurements of alternative systems in a full‐scale model which would satisfy the very demanding standards of a truly scientific experiment. Therefore the results drawn from Sulzer Brother's experimental building in Winter‐thur, Switzerland, are of particular importance to anyone concerned with building design and property management. For, one of the objects of constructing this building was to test in a real life example whether energy could be saved by integrating the design of the building with its services in a particular manner. Also, it was to provide a practical model in which alternative methods could be measured and evaluated.

Details

Property Management, vol. 3 no. 2
Type: Research Article
ISSN: 0263-7472

Access Restricted. View access options
Article
Publication date: 21 June 2022

Ying-Jie Guan, Yong-Ping Li and Peng Zeng

To solve the problems of short battery life and low transportation safety of logistics drones, this paper aims to propose a design of logistics unmanned aerial vehicles (UAV) wing…

269

Abstract

Purpose

To solve the problems of short battery life and low transportation safety of logistics drones, this paper aims to propose a design of logistics unmanned aerial vehicles (UAV) wing with a composite ducted rotor, which combines fixed wing and rotary-wing.

Design/methodology/approach

This UAV adopts tiltable ducted rotor combined with fixed wing, which has the characteristics of fast flight speed, large carrying capacity and long endurance. At the same time, it has the hovering and vertical take-off and landing capabilities of the rotary-wing UAV. In addition, aerodynamic simulation analysis of the composite model with a fixed wing and a ducted rotor was carried out, and the aerodynamic influence of the composite model on the UAV was analyzed under different speeds, fixed wing angles of attack and ducted rotor speeds.

Findings

The results were as follows: when the speed of the ducted rotor is 2,500 rpm, CL and K both reach maximum values. But when the speed exceeds 3,000 rpm, the lift will decrease; when the angle of attack of the fixed wing is 10° and the rotational speed of the ducted rotor is about 3,000 rpm, the aerodynamic characteristics of the wing are better.

Originality/value

The novelty of this work comes from a composite wing design of a fixed wing combined with a tiltable ducted rotor applied to the logistics UAVs, and the aerodynamic characteristics of the design wing are analyzed.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Available. Open Access. Open Access
Article
Publication date: 13 February 2024

Amer Jazairy, Emil Persson, Mazen Brho, Robin von Haartman and Per Hilletofth

This study presents a systematic literature review (SLR) of the interdisciplinary literature on drones in last-mile delivery (LMD) to extrapolate pertinent insights from and into…

4886

Abstract

Purpose

This study presents a systematic literature review (SLR) of the interdisciplinary literature on drones in last-mile delivery (LMD) to extrapolate pertinent insights from and into the logistics management field.

Design/methodology/approach

Rooting their analytical categories in the LMD literature, the authors performed a deductive, theory refinement SLR on 307 interdisciplinary journal articles published during 2015–2022 to integrate this emergent phenomenon into the field.

Findings

The authors derived the potentials, challenges and solutions of drone deliveries in relation to 12 LMD criteria dispersed across four stakeholder groups: senders, receivers, regulators and societies. Relationships between these criteria were also identified.

Research limitations/implications

This review contributes to logistics management by offering a current, nuanced and multifaceted discussion of drones' potential to improve the LMD process together with the challenges and solutions involved.

Practical implications

The authors provide logistics managers with a holistic roadmap to help them make informed decisions about adopting drones in their delivery systems. Regulators and society members also gain insights into the prospects, requirements and repercussions of drone deliveries.

Originality/value

This is one of the first SLRs on drone applications in LMD from a logistics management perspective.

Details

The International Journal of Logistics Management, vol. 36 no. 7
Type: Research Article
ISSN: 0957-4093

Keywords

Access Restricted. View access options
Article
Publication date: 14 March 2024

Marcel Peppel, Stefan Spinler and Matthias Winkenbach

The e-commerce boom presents new challenges for last-mile delivery (LMD), which may be mitigated by new delivery technologies. This paper evaluates the impact of mobile parcel…

850

Abstract

Purpose

The e-commerce boom presents new challenges for last-mile delivery (LMD), which may be mitigated by new delivery technologies. This paper evaluates the impact of mobile parcel lockers (MPL) on costs and CO2 equivalent (CO2e) emissions in existing LMD networks, which include home delivery and shipments to stationary parcel lockers.

Design/methodology/approach

To describe customers’ preferences, we design a multinomial logit model based on recipients’ travel distance to pick-up locations and availability at home. Based on route cost estimation, we define the operating costs for MPLs. We devise a mathematical model with binary decision variables to optimize the location of MPLs.

Findings

Our study demonstrates that integrating MPLs leads to additional cost savings of 8.7% and extra CO2e emissions savings of up to 5.4%. Our analysis of several regional clusters suggests that MPLs yield benefits in highly populous cities but may result in additional emissions in more rural areas where recipients drive longer distances to pick-ups.

Originality/value

This paper designs a suitable operating model for MPLs and demonstrates environmental and economic savings. Moreover, it adds recipients’ availability at home to receive parcels improving the accuracy of stochastic demand. In addition, MPLs are evaluated in the context of several regional clusters ranging from large cities to rural areas. Thus, we provide managerial guidance to logistics service providers how and where to deploy MPLs.

Details

International Journal of Physical Distribution & Logistics Management, vol. 54 no. 4
Type: Research Article
ISSN: 0960-0035

Keywords

Available. Open Access. Open Access
Article
Publication date: 21 July 2023

Harry Edelman, Joel Stenroos, Jorge Peña Queralta, David Hästbacka, Jani Oksanen, Tomi Westerlund and Juha Röning

Connecting autonomous drones to ground operations and services is a prerequisite for the adoption of scalable and sustainable drone services in the built environment. Despite the…

1395

Abstract

Purpose

Connecting autonomous drones to ground operations and services is a prerequisite for the adoption of scalable and sustainable drone services in the built environment. Despite the rapid advance in the field of autonomous drones, the development of ground infrastructure has received less attention. Contemporary airport design offers potential solutions for the infrastructure serving autonomous drone services. To that end, this paper aims to construct a framework for connecting air and ground operations for autonomous drone services. Furthermore, the paper defines the minimum facilities needed to support unmanned aerial vehicles for autonomous logistics and the collection of aerial data.

Design/methodology/approach

The paper reviews the state-of-the-art in airport design literature as the basis for analysing the guidelines of manned aviation applicable to the development of ground infrastructure for autonomous drone services. Socio-technical system analysis was used for identifying the service needs of drones.

Findings

The key findings are functional modularity based on the principles of airport design applies to micro-airports and modular service functions can be connected efficiently with an autonomous ground handling system in a sustainable manner addressing the concerns on maintenance, reliability and lifecycle.

Research limitations/implications

As the study was limited to the airport design literature findings, the evolution of solutions may provide features supporting deviating approaches. The role of autonomy and cloud-based service processes are quintessentially different from the conventional airport design and are likely to impact real-life solutions as the area of future research.

Practical implications

The findings of this study provided a framework for establishing the connection between the airside and the landside for the operations of autonomous aerial services. The lack of such framework and ground infrastructure has hindered the large-scale adoption and easy-to-use solutions for sustainable logistics and aerial data collection for decision-making in the built environment.

Social implications

The evolution of future autonomous aerial services should be accessible to all users, “democratising” the use of drones. The data collected by drones should comply with the privacy-preserving use of the data. The proposed ground infrastructure can contribute to offloading, storing and handling aerial data to support drone services’ acceptability.

Originality/value

To the best of the authors’ knowledge, the paper describes the first design framework for creating a design concept for a modular and autonomous micro-airport system for unmanned aviation based on the applied functions of full-size conventional airports.

Details

Facilities , vol. 41 no. 15/16
Type: Research Article
ISSN: 0263-2772

Keywords

1 – 5 of 5
Per page
102050