Altaf A.H. Basta, Vivian Lotfy, Jehane Micky and Aya M. Salem
This paper aims to study the effect of hydrolysis route of hydroxypropyl cellulose (HPC) on its esterification performance as liquid crystal material. The assessment was carried…
Abstract
Purpose
This paper aims to study the effect of hydrolysis route of hydroxypropyl cellulose (HPC) on its esterification performance as liquid crystal material. The assessment was carried out from the data of spectra (Fourier-transform infrared analysis [FTIR] and 1H-nuclear magnetic resonance [1H-NMR]), thermal stability as well as optical properties via forming ordered mesophases at lower concentration than HPC.
Design/methodology/approach
The HPC was hydrolyzed by hydrochloric acid-methanol at times 9 and 18 h, and the products were esterified by decanoyl chloride. The products of hydrolysis and the esterification were characterized by FTIR, NMR, nonisothermal analysis, thermo-gravimetric analysis (TGA) and polarizing microscope to evaluate the role of degree of substitution of HPC as a result of hydrolysis, on esterification degree, thermal stability and thermal and liquid crystal behavior of the final esterified HPC.
Findings
The pretreatment by acid hydrolysis of HPC was successful for synthesizing novel cholesteric hydroxypropyl cellulose ester. The data of FTIR and TGA thermal analysis proved that hydrolysis and esterification of HPC with the decanoyl chain significantly enhanced crystallinity of this cellulose derivative from 0.57 to (1.7–1.9). Moreover, they provided products with superior thermal stability than pure HPC, as noticed from increasing the activation energy of degradation (Ea) from 514.3 to 806.2 kJ/mol. The NMR measurement proved that hydrolysis of HPC for 9 and 18 h decreased the degree of substitution from 3 to 2.1 and 1.3, respectively. Moreover, the esterified HPC showed a promising birefringence texture (chiral nematic) besides decreasing the critical concentration from 30% for HPC to 10% for the esterified unhydrolyzed HPC, while superior decreasing to 1–5% was observed for the esterified hydrolyzed HPC.
Research limitations/implications
There are two stages for preparation of decanoyl ester hydroxypropyl cellulose. At the first stage, HPC was treated by hydrochloric acid-methanol in ratio 1:10 at times 9 and18 h. At the second stage, HPC and hydrolyzed HPC were refluxed with decanoyl chloride (1:6) in presence of nitrogen atmosphere. The final product was precipitated by distilled water.
Practical implications
There are two stages for preparation of decanoyl ester hydroxypropyl cellulose. At the first stage, HPC was treated by hydrochloric acid-methanol in ratio 1:10 at times 9 and18 h. At the second stage, HPC and hydrolyzed HPC were refluxed with decanoyl chloride (1:6) in presence of nitrogen atmosphere. The final product was precipitated by distilled water.
Originality/value
The novelty of this work was focused on enhancing the crystallinity, thermal stability and liquid crystal behavior of esterified HPC, via decreasing the degree of substitution and consequently the type of OH group subjected to esterification. The decanoyl ester formation from the hydrolyzed hydroxypropyl cellulose is able to form ordered mesophases at even low concentration (promising birefringence texture at concentrations 1–5%). It is worthy to notice that the investigated route is able to omit the role of graphene oxide in promoting the liquid crystal behavior of HPC, as it hasn't any effect on critical concentration. This work will promote the use of HPC in technological applications, e.g. high modulus fibers and electronic devices.
Details
Keywords
Altaf Halim Basta, Houssni El-Saied, Amin Mahmoud Baraka and Vivian Fayez Lotfy
The purpose of this research paper focused on studying the role of activated carbons (ACs), which were synthesized from long-chain aldehyde-based xerogels (Xs-AC), as benefit…
Abstract
Purpose
The purpose of this research paper focused on studying the role of activated carbons (ACs), which were synthesized from long-chain aldehyde-based xerogels (Xs-AC), as benefit additives to enhance the application of a low-cost urea formaldehyde (UF) adhesive for production of rice straw (RS) composites complying with both the standard specifications of particle-board type and the board produced from using conventional adhesive of RS fibers (methylene diphenyl diisocyanate, MDI). The results are supported by differential scanning calorimetry (DSC) analysis, which indicated the curing and interaction of RS fibers with the adhesive systems.
Design/methodology/approach
RS-based composites of particle-board type were prepared from applying new Xs-AC–UF adhesive systems to RS particles. For comparison, particle boards by using commercial UF and 4 per cent MDI were also prepared. To clear the beneficial effect of X-ACs as new HCHO (formaldehyde)-scavengers, the properties of the resulted boards were compared with those produced from the previous investigated scavenger: amide-containing starch-UF (AM/St–UF), and treated RS. DSC analysis was performed on the RS adhesive system, to follow the curing and the interaction behavior of UF with fibers in the presence of Xs-ACs.
Findings
The promising results obtained of RS particle boards from using the investigated new HCHO-scavenger are modulus of rupture (MOR) = 17.2 MPa, modulus of elasticity (MOE) = 4,689 MPa and internal bond (IB) strength = 0.49 MPa. While, the thickness swelling (TS) and maximum reduction in free-HCHO are 48.5 and 44.6 per cent, respectively; this reduction value specified the particle-board of E1-E2 type.
Research limitations/implications
The X-AC-UF adhesive systems and treated RS provided particle boards with mechanical properties (MOR, MOE and IB) that met the standard specification values (class M-2 according to ANSI standard and P-2 according to EN standard requirements), together with maximum reduction in toxicity of UF. However, the resistance in water swelling property is weak and needs further study to be solved.
Practical implications
The incorporation of small percentage of new HCHO-scavenger (X-AC) to UF is an effective way to improve its thermal behavior. Moreover, the mechanical properties of agro-based composites based on the treated RS waste together with the X-AC-UF system exceeded those values of panels produced from (AM/St-UF) and also from (4 per cent MDI).
Social implications
Incorporating the Xs-AC to commercial UF will be of benefit for saving the health of wood co-workers and motivating the wood mill to export its wood products, as well as minimizing the export of MDI.
Originality/value
This paper was based on enhancing the potential utilization of both undesirable RS agro wastes and environmentally unacceptable low-cost UF adhesive in the production of agro-composites that comply with the International Standard Specifications of particle board type. In this respect, a new HCHO-scavenger was synthesized and applied, based on AC from non-conventional xerogels. This study presents a solution to protect the environment from pollution, as a result of burning the undesirable RS, as well as to protect the workers and users of wood panels from exposure to the toxic and carcinogenic gas (formaldehyde). It also benefits in replacing the high cost of the RS adhesive (MDI) by using low-cost modified UF.
Details
Keywords
Altaf H. Basta, Vivian F. Lotfy and Aya M. Salem
This study aims to motivate the application of some low-cost minerals in synthesizing nanoparticles as effective additives on the performance of liquid crystal (LC) hydroxypropyl…
Abstract
Purpose
This study aims to motivate the application of some low-cost minerals in synthesizing nanoparticles as effective additives on the performance of liquid crystal (LC) hydroxypropyl cellulose (HPC) nanocomposite film, in comparison with carbon nanoallotrope.
Design/methodology/approach
Metallic nanoparticles of vanadium oxide, montmorillonite (MMT) and bentonite were synthesized and characterized by different techniques (Transmission electron microscopy [TEM], X-ray diffraction [XRD] and Fourier transform infrared [FTIR]). While the XRD, FTIR, non-isothermal analysis thermogravimetric analysis, mechanical analysis, scanning electron microscope and polarizing microscope were techniques used to evaluate the key role of metallic nanoparticles on the performance of HPC-nanocomposite film.
Findings
The formation of nanoparticles was evidenced from TEM. The XRD and FTIR measurements of nanocomposite films revealed that incorporating the mineral nanoparticles led to enhance the HPCs crystallinity from 14% to 45%, without chemical change of HPC structure. It is interesting to note that these minerals provide higher improvement in crystallinity than carbon nanomaterials (28%). Moreover, the MMT provided film with superior thermal stability and mechanical properties than pure HPC and HPC containing carbon nanoparticles, where it increased the Ea from 583.6 kJ/mol to 669.3 kJ/mol, tensile strength from 2.25 MPa to 2.8 MPa, Young’s modulus from 119 MPa to 124 MPa. As well as it had a synergistic effect on the LC formation and the birefringence texture of the nanocomposites (chiral nematic).
Research limitations/implications
Hydroxylpropyl cellulose-nanocomposite films were prepared by dissolving the HPC powder in water to prepare 50% concentration, (free or with incorporating 5% synthesized nanoparticles). To obtain films with uniform thickness, the prepared solutions were evenly spread on a glass plate via an applicator, by adjusting the thickness to 0.2 mm, then air dried.
Practical implications
These minerals provide higher improvement in crystallinity than carbon nanomaterials (28%), moreover, the MMT and bentonite provided films with superior thermal stability than pure HPC and HPC containing carbon nanoparticles. The mineral nanoparticles (especially MMT nanoclays) had a synergistic effect on LC formation and the birefringence texture of the nanocomposites (chiral nematic).
Social implications
This study presents the route to enhance the utilization of claystone available in El-Fayoum Province as the precursor for nanoparticles and production high performance LC nanocomposites.
Originality/value
This study presents the route for the valorization of low-cost mineral-based nanoparticles in enhancing the properties of HPC-film (crystallinity, thermal stability, mechanical strength), in comparison with carbon-based nanoparticles. Moreover, these nanoparticles provided more ordered mesophases and, consequently, good synergetic effect on LCs formation and the birefringence texture of the HPC-films.
Details
Keywords
Altaf H. Basta, Houssni El‐Saied and Vivian F. Lotfy
The purpose of this paper is to study the possibility of preparing high performance, agro‐based composites from rice straw, using eco‐polyalcohol polymers‐based adhesive system…
Abstract
Purpose
The purpose of this paper is to study the possibility of preparing high performance, agro‐based composites from rice straw, using eco‐polyalcohol polymers‐based adhesive system. The utilization of rice straw (undesirable biowastes) for the production of high quality biocomposite products, will add economic value, help to reduce the environmental impact of waste disposal and, most importantly, provide a potentially inexpensive alternative to the existing commercial artificial wood‐panels.
Design/methodology/approach
Simple synthesizing and optimizing the polyalcohol polymers‐based non‐toxic adhesive system were carried out, by blending corn starch, as natural polyalcohol polymer with polyvinyl alcohol, as synthetic polyalcohol polymers‐based adhesive (St/PV adhesive), at temperature ∼75°C. The percentages of adhesive components, type of starch, bonding temperature and time were optimized. Assessment of the synthesized adhesive was performed from its adhesion behavior (bond strength), in comparison with commercial thermosetting resin (urea‐formaldehyde), as well as the properties (mechanical and physical properties) of the composites produced. The effects of amount and type of water resistance co‐additives (paraffin wax and polyester), on mechanical properties of RS‐based composite were also optimized.
Findings
The promising adhesive system exhibits improved performance over a previously commercially HCHO‐based adhesive (UF), and results bonding strength 9.8 N/mm2, as well as MOR, IB and TS of RS‐based composites up to 31 N/mm2, 0.49 N/mm2 and 20%, respectively.
Research limitations/implications
Through the studied eco‐adhesive with relatively high natural polyalcohol polymer (starch) in presence of water‐resistance additive (PE) provided a good bonding strength and comparative RS‐based composite properties, with that produced from commercial UF. For the mechanical properties (MOR and IB) are complied the standard values; while water resistance is still higher. Further study is needed to solve this problem.
Practical implications
The approach provided a HCHO‐free adhesive with good bonding strength, comparative board strength and water resistance, reasonable working life, and without formaldehyde emission. Starch‐based adhesive with low percentages of polyvinyl alcohol is considered a promising inexpensive alternate adhesive in wood industry based on rice straw wastes, which traditionally required expensive pMDI.
Originality/value
The paper provides a potential way to utilise undesirable rice by‐product (RS), corn starch as industrial raw material. This will benefit farmers significantly. Meanwhile, the modified starch adhesive with low percentage of PVA is promising to partly or completely replace urea formaldehyde resin and pMDI that are mainly used in wood industry, or pMDI in RS‐based artificial wood, avoiding formaldehyde emission or toxic gases during exposed to burning, and reducing the dependence on petroleum products.
Details
Keywords
Bashaer Almatrooshi, Sanjay Kumar Singh and Sherine Farouk
The purpose of this paper is to review the existing literature on determinants that influence organizational performance and to develop a framework that could be beneficial for…
Abstract
Purpose
The purpose of this paper is to review the existing literature on determinants that influence organizational performance and to develop a framework that could be beneficial for leaders.
Design/methodology/approach
This paper uses a systematic review of articles on the factors that influence organizational performance. The purpose of this systematic review is to collect and summarize all empirical evidence from literature that fits the context of this study.
Findings
The findings of the study have been weaved together in a proposed framework for the role of cognitive, emotional, and social competencies on leadership competencies that in turn influence both employee and organizational performance.
Research limitations/implications
This paper is a literature review, a framework on the determinants of organizational performance has been proposed but has not yet been tested empirically.
Practical implications
Leaders can leverage the results of this study to enhance their leadership competencies for the purpose of improving the performance on both individual employee and organizational levels.
Originality/value
There are few research-based studies on the determinants of organizational performance. This paper has identified key variables that play a significant role in helping organizations perform effectively.