Wei V. Liu, Derek B. Apel and Vivek S. Bindiganavile
The trapped geothermal heat in the infinite rock mass through which mine tunnels are excavated is a great threat to the safety of personnel and mine operating equipment in deep…
Abstract
Purpose
The trapped geothermal heat in the infinite rock mass through which mine tunnels are excavated is a great threat to the safety of personnel and mine operating equipment in deep underground hot mines. In order to lessen the temperature inside the tunnel a considerable amount of energy is being spent by the way of using ventilation and cooling systems to dissipate the heat. However, operational costs of the system rise quite considerably, especially as the mines get deeper. Shotcrete is used both as a structural lining and as an effective insulation to reduce the heat load on the ventilation and cooling system within such tunnels. The paper aims to discuss these issues.
Design/methodology/approach
In order to analyse this problem of heat flow and thermal stresses and their time dependent pattern, several cylindrical models, in both analytical and numerical forms, are discussed and compared in this paper.
Findings
This study shows the validation of ABAQUS® software to predict the time dependent temperature and the thermal stresses in mine tunnels through the comparisons with the available analytical models. Further, thermal insulation effects of shotcrete are also evaluated with these theoretical models and it is found that all the models gave results in close agreements with one another.
Originality/value
Therefore, this study provides the theoretical proof for advantages in applying shotcrete as the thermal insulation layer in underground mines.
Details
Keywords
M. Manjunatha, N. Suresh, Vivek Bindiganavile, Vadiraj Rao and Sanjay Shivaswamy
The aim of the current study is to inspect the influence of high temperatures on the compressive and split-tensile-strength (STS) of concrete mixtures produced by replacing…
Abstract
Purpose
The aim of the current study is to inspect the influence of high temperatures on the compressive and split-tensile-strength (STS) of concrete mixtures produced by replacing natural river sand with waste-foundry sand (WFS) at 25%, 50%, 75% and 100%. When the experimental findings and the projected outcomes were compared by IS:456-2000 code equations, the STS results predicted by the suggested mathematical equations exhibit lower variations. It is proposed to employ the presented mathematical formulas to evaluate the STS of concrete cylindrical specimens at higher temperatures.
Design/methodology/approach
After fabricating, concrete mixtures were allowed to cure for 28 days. For the purpose of avoiding explosive spalling during the heating process, concrete samples are taken out from the curing chamber after 28 days and allowed to dry for two days. The manufactured concrete specimen is exposed to 100 °C, 200 °C, 300 °C, 400 °C, 500 °C and 600 °C temperatures for a duration of 2 h. After the specimens have cool down to room temperature (RT), the physical test, ultrasonic-pulse-velocity (UPV) test, compressive strength test and STS test are carried out.
Findings
With an increase in WFS content, concrete specimens' residue compressive-strength and STS decreases. The STS of samples declines as the WFS content rises with increase in temperature interval. According to the UPV test, the concrete samples quality is “good” up to 400 °C; after 500 °C, it ranges from “doubtful to poor.” The UPV values of various mixes declined as the temperature increased. Mass losses increase with exposure to greater temperatures and with an increase in the proportions of WFS in concrete specimens. For mixtures MWFS-0, MWFS-1, MWFS-2, MWFS-3 and MWFS-4 (0%, 25%, 50%, 75% and 100% WFS content), no cracks were present on any of the samples below 400 °C. Concrete surfaces start to show cracks whenever the intervals of temperature increase above 400 °C.
Originality/value
In this investigation, WFS elements are totally substituted for natural sand in concrete mixtures. The residue strength properties, including residual compressive strength and residual STS, were found to be lower after exposures to greater temperature when comparisons were made to referral mixtures. When comparing specimens’ compressive strength, higher temperatures have more effects on the STS of samples with higher WFS contents.