Search results

1 – 10 of 19
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 21 May 2024

Ch Kapil Ror, Vishal Mishra, Sushant Negi and Vinyas M.

This study aims to evaluate the potential of using the in-nozzle impregnation approach to reuse recycled PET (RPET) to develop continuous banana fiber (CBF) reinforced…

147

Abstract

Purpose

This study aims to evaluate the potential of using the in-nozzle impregnation approach to reuse recycled PET (RPET) to develop continuous banana fiber (CBF) reinforced bio-composites. The mechanical properties and fracture morphology behavior are evaluated to establish the relationships between layer spacing–microstructural characteristics–mechanical properties of CBF/RPET composite.

Design/methodology/approach

This study uses RPET filament developed from post-consumer PET bottles and CBF extracted from agricultural waste banana sap. RPET serves as the matrix material, while CBF acts as the reinforcement. The test specimens were fabricated using a customized fused deposition modeling 3D printer. In this process, customized 3D printer heads were used, which have a unique capability to extrude and deposit print fibers consisting of a CBF core coated with an RPET matrix. The tensile and flexural samples were 3D printed at varying layer spacing.

Findings

The Young’s modulus (E), yield strength (sy) and ultimate tensile strength of the CBF/RPET sample fabricated with 0.7 mm layer spacing are 1.9 times, 1.25 times and 1.8 times greater than neat RPET, respectively. Similarly, the flexural test results showed that the flexural strength of the CBF/RPET sample fabricated at 0.6 mm layer spacing was 47.52 ± 2.00 MPa, which was far greater than the flexural strength of the neat RPET sample (25.12 ± 1.94 MPa).

Social implications

This study holds significant social implications highlighting the growing environmental sustainability and plastic waste recycling concerns. The use of recycled PET material to develop 3D-printed sustainable structures may reduce resource consumption and encourages responsible production practices.

Originality/value

The key innovation lies in the concept of in-nozzle impregnation approach, where RPET is reinforced with CBF to develop a sustainable composite structure. CBF reinforcement has made RPET a superior, sustainable, environmentally friendly material that can reduce the reliance on virgin plastic material for 3D printing.

Details

Rapid Prototyping Journal, vol. 30 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 30 May 2023

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf Charles DSouza and Thirumaleshwara Bhat

This paper aims to report the effect of titanium oxide (TiO2) particles on the physical, mechanical, tribological and water resistance properties of 5% NaOH-treated bamboo…

121

Abstract

Purpose

This paper aims to report the effect of titanium oxide (TiO2) particles on the physical, mechanical, tribological and water resistance properties of 5% NaOH-treated bamboo fiber–reinforced composites.

Design/methodology/approach

In this research, the epoxy/bamboo/TiO2 hybrid composite filled with 0–8 Wt.% TiO2 particles has been fabricated using simple hand layup techniques, and testing of the developed composite was done in accordance with the American Society for Testing and Materials (ASTM) standard.

Findings

The results of this study indicate that the addition of TiO2 particles improved the mechanical properties of the developed epoxy/bamboo composites. Tensile properties were found to be maximum for 6 Wt.%, and impact strength was found to be maximum for 8 Wt.% TiO2 particles-filled composite. The highest flexural properties were found at a lower TiO2 fraction of 2 Wt.%. Adding TiO2 filler helped to reduce the water absorption rate. The studies related to the wear and friction behavior of the composite under dry and abrasive wear conditions reveal that TiO2 filler was beneficial in improving the wear performance of the composite.

Originality/value

This research paper attempts to include both TiO2 filler and bamboo fibers to develop a novel composite material. TiO2 micro and nanoparticles are promising filler materials; it helps to enhance the mechanical and tribological properties of the epoxy composites and in literature, there is not much work reported, where TiO2 is used as a filler material with bamboo fiber–reinforced epoxy composites.

Details

World Journal of Engineering, vol. 21 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Access Restricted. View access options
Article
Publication date: 30 January 2024

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf Charles DSouza and Thirumaleshwara Bhat

The purpose of this study is to investigate the impact of titanium oxide (TiO2) filler on the abrasive wear properties of bamboo fiber reinforced epoxy composites (BFRCs) using a…

43

Abstract

Purpose

The purpose of this study is to investigate the impact of titanium oxide (TiO2) filler on the abrasive wear properties of bamboo fiber reinforced epoxy composites (BFRCs) using a Taguchi approach. The study aims to enhance the abrasive wear resistance of these composites by introducing TiO2 filler as a potential reinforcement, thus contributing to the development of sustainable and environmentally friendly materials.

Design/methodology/approach

This study focuses on the fabrication of epoxy/bamboo composites infused with TiO2 particles within the Wt.% range of 0–8 Wt.% using hand layup techniques. The resulting composites were subjected to wear testing according to ASTM G99-05 standards. Statistical analysis of the wear results was carried out using the Taguchi design of experiments (DOE). Additionally, an analysis of variance (ANOVA) was used to determine the influential control factors impacting the specific wear rate (SWR) and coefficient of friction (COF).

Findings

The study illuminates how integrating TiO2 filler enhances abrasive wear in epoxy/bamboo composites. Statistical analysis of SWR highlights abrasive grit size (grit) as the most influential factor, followed by normal load, Wt.% of TiO2 and sliding distance. Analysis of the COF identifies normal load as the primary influential factor, followed by grit, Wt.% of TiO2 and sliding distance. The Taguchi predictive model closely aligns with experimental results, validating its reliability. The morphological study revealed significant differences between the unfilled and TiO2-filled composites. The inclusion of TiO2 improved wear resistance, as evidenced by reduced surface damage and wear debris.

Originality/value

This research paper aims to integrate TiO2 filler and bamboo fibers to create an innovative hybrid composite material. TiO2 micro and nanoparticles show promise as filler materials, contributing to improved tribological properties of epoxy composites. The utilization of Taguchi’s DOE and ANOVA for statistical analysis provides valuable guidance for academic researchers and practitioners in optimizing control variables, especially in the context of natural fiber reinforced composites.

Details

World Journal of Engineering, vol. 22 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Access Restricted. View access options
Article
Publication date: 21 June 2023

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf Charles D’Souza and Thirumaleshwara Bhat

This paper aims to report the effect of titanium oxide (TiO2) particles on the specific wear rate (SWR) of alkaline treated bamboo and flax fiber-reinforced composites (FRCs…

90

Abstract

Purpose

This paper aims to report the effect of titanium oxide (TiO2) particles on the specific wear rate (SWR) of alkaline treated bamboo and flax fiber-reinforced composites (FRCs) under dry sliding condition by using a robust statistical method.

Design/methodology/approach

In this research, the epoxy/bamboo and epoxy/flax composites filled with 0–8 Wt.% TiO2 particles have been fabricated using simple hand layup techniques, and wear testing of the composite was done in accordance with the ASTM G99-05 standard. The Taguchi design of experiments (DOE) was used to conduct a statistical analysis of experimental wear results. An analysis of variance (ANOVA) was conducted to identify significant control factors affecting SWR under dry sliding conditions. Taguchi prediction model is also developed to verify the correlation between the test parameters and performance output.

Findings

The research study reveals that TiO2 filler particles in the epoxy/bamboo and epoxy/flax composite will improve the tribological properties of the developed composites. Statistical analysis of SWR concludes that normal load is the most influencing factor, followed by sliding distance, Wt.% TiO2 filler and sliding velocity. ANOVA concludes that normal load has the maximum effect of 31.92% and 35.77% and Wt.% of TiO2 filler has the effect of 17.33% and 16.98%, respectively, on the SWR of bamboo and flax FRCs. A fairly good agreement between the Taguchi predictive model and experimental results is obtained.

Originality/value

This research paper attempts to include both TiO2 filler and bamboo/flax fibers to develop a novel hybrid composite material. TiO2 micro and nanoparticles are promising filler materials, it helps to enhance the mechanical and tribological properties of the epoxy composites. Taguchi DOE and ANOVA used for statistical analysis serve as guidelines for academicians and practitioners on how to best optimize the control variable with particular reference to natural FRCs.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Access Restricted. View access options
Article
Publication date: 7 August 2024

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf Charles DSouza and Thirumaleshwara Bhat

This study aims to investigate the impact of titanium oxide (TiO2) filler on the coefficient of friction (COF) and specific wear rate (SWR) in flax fiber reinforced epoxy…

7

Abstract

Purpose

This study aims to investigate the impact of titanium oxide (TiO2) filler on the coefficient of friction (COF) and specific wear rate (SWR) in flax fiber reinforced epoxy composites (FFRCs) under abrasive wear conditions utilizing the Taguchi approach. The primary objective is to enhance wear resistance and promote the development of sustainable materials for various applications.

Design/methodology/approach

Epoxy/flax composites with varying TiO2 filler content (0–8 wt%) are fabricated through the hand layup method. Subsequently, wear testing is conducted following ASTM G99-05 standards. The Taguchi design of experiments (DOE) and analysis of variance (ANOVA) are utilized for statistical analysis.

Findings

Results indicate a significant improvement in abrasive wear properties with the incorporation of TiO2 filler. The COF is found to be most influenced by the normal load (55.19%), followed by grit size, wt% TiO2 filler and sliding distance. SWR is found to be most influenced by the grit size (42.92%), followed by wt% TiO2, normal load and sliding distance. Notably, the Taguchi model aligns well with experimental results, demonstrating its efficacy in predicting the abrasive wear behavior of FFRCs.

Originality/value

This research introduces a novel hybrid composite that combines TiO2 filler and flax fibers, showcasing their potential to enhance the tribological properties of epoxy composites. The study offers valuable insights into optimizing abrasive wear test variables in natural fiber-reinforced composites using Taguchi DOE and ANOVA, crucial for improving the performance of sustainable materials in engineering applications.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Access Restricted. View access options
Article
Publication date: 20 November 2020

Rajendran Selvamani, M. Mahaveer Sree Jayan and Farzad Ebrahimi

The purpose of this paper is concerned with the study of nonlinear ultrasonic waves in a magneto-flexo-thermo (MFT) elastic armchair single-walled carbon nanotube (ASWCNT) resting…

88

Abstract

Purpose

The purpose of this paper is concerned with the study of nonlinear ultrasonic waves in a magneto-flexo-thermo (MFT) elastic armchair single-walled carbon nanotube (ASWCNT) resting on polymer matrix.

Design/methodology/approach

A mathematical model is developed for the analytical study of nonlinear ultrasonic waves in a MFT elastic armchair single walled carbon nanotube rested on polymer matrix using Euler beam theory. The analytical formulation is developed based on Eringen’s nonlocal elasticity theory to account small scale effect. After developing the formal solution of the mathematical model consisting of partial differential equations, the frequency equations have been analysed numerically by using the nonlinear foundations supported by Winkler-Pasternak model. The solution is obtained by ultrasonic wave dispersion relations.

Findings

From the literature survey, it is evident that the analytical formulation of nonlinear ultrasonic waves in an MFT elastic ASWCNT embedded on polymer matrix is not discussed by any researchers. So, in this paper the analytical solutions of nonlinear ultrasonic waves in an MFT elastic ASWCNT embedded on polymer matrix are studied. Parametric studies is carried out to scrutinize the influence of the nonlocal scaling, magneto-electro-mechanical loadings, foundation parameters, various boundary condition and length on the dimensionless frequency of nanotube. It is noticed that the boundary conditions, nonlocal parameter and tube geometrical parameters have significant effects on dimensionless frequency of nanotubes.

Originality/value

This paper contributes the analytical model to find the solution of nonlinear ultrasonic waves in an MFT elastic ASWCNT embedded on polymer matrix. It is observed that the increase in the foundation constants raises the stiffness of the medium and the structure is able to attain higher frequency once the edge condition is C-C followed by S-S. Further, it is noticed that the natural frequency is arrived below 1% in both local and nonlocal boundary conditions in the presence of temperature coefficients. Also, it is found that the density and Poisson ratio variation affects the natural frequency with below 2%. The results presented in this study can provide mechanism for the study and design of the nano devices such as component of nano oscillators, micro wave absorbing, nano-electron technology and nano-electro--magneto-mechanical systems that make use of the wave propagation properties of ASWCNTs embedded on polymer matrix.

Details

World Journal of Engineering, vol. 18 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Access Restricted. View access options
Article
Publication date: 22 July 2019

Achchhe Lal and Khushbu Jain

The purpose of this paper is to evaluate hygro-thermo-mechanically induced normalized stress intensity factor (NSIF) of an edge crack symmetric angle-ply piezo laminated composite…

73

Abstract

Purpose

The purpose of this paper is to evaluate hygro-thermo-mechanically induced normalized stress intensity factor (NSIF) of an edge crack symmetric angle-ply piezo laminated composite plate (PLCP) using displacement correlation method.

Design/methodology/approach

In the present work, the governing equations are solved through conventional finite element method combined with higher order shear deformation plate theory utilizing the micromechanical approach.

Findings

The effects of crack length, the thickness of the plate and piezoelectric layer, stacking sequences, fiber volume fraction, position of piezoelectric layer, change in moisture and temperature, and voltage on the NSIF are examined. The numerical results are presented in the form of a table for the better understanding and accuracy. The present outlined approach is validated with results available in the literature. These results can become a benchmark for future studies.

Research limitations/implications

The mathematical models theoretically have been developed by considering different parameters. The results are generated using MATLAB 2015 software developed by the authors’ side.

Originality/value

The fracture analysis of a single edge crack PLCP with the effect of a piezoelectric layer at the different location of cracked structures, plate thickness, and actuator voltage and hygro-thermo loading is the novelty of research for health monitoring and high-performance analysis.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Access Restricted. View access options
Article
Publication date: 17 February 2022

Cho-Pei Jiang, Yung-Chang Cheng, Hong-Wei Lin, Yu-Lee Chang, Tim Pasang and Shyh-Yuan Lee

Polyetheretherketone (PEEK) is used to manufacture biomedical implants because it has a high strength-to-weight ratio and high strength and is biocompatible. However, the use of…

895

Abstract

Purpose

Polyetheretherketone (PEEK) is used to manufacture biomedical implants because it has a high strength-to-weight ratio and high strength and is biocompatible. However, the use of fused deposition modeling to print a PEEK results in low strength and crystallinity. This study aims to use the Taguchi method to optimize the printing factors to obtain the highest tensile strength of the printed PEEK object. The annealing effect on printed PEEK object and crystallinity are also investigated.

Design/methodology/approach

This study determines the printing factors including the printing speed, layer thickness, printing temperature and extrusion width. Taguchi experimental design with a L9 orthogonal array is used to print the tensile specimen and carried out the tensile test to compare the tensile strength and porosity. Analysis of variance (ANOVA) is used to determine the experimental error and to determine the optimization printing parameters to obtain the highest tensile strength. A multivariate linear regression analysis is used to obtain the linear regression equation for predicting the theoretical tensile strength. An X-ray analysis is achieved to evaluate the crystalline of printed object. The effect of annealing is investigated to improve the tensile strength of printed part. An intervertebral lumber device is printed to demonstrate the feasibility of the obtained optimization parameters for practical application.

Findings

Taguchi experiment designs nine sets of parameters to print the PEEK tensile specimen. The experimental results and the ANOVA present that the order in which the factors affect the tensile strength for printed PEEK parts is the layer thickness, the extrusion width, the printing speed and the printing temperature. The optimized printing parameters are a printing speed of 5 mm/s, a layer thickness of 0.1 mm, a printing temperature of 395 °C and an extrusion strand width of 0.44 mm. The average tensile strength of printed specimen with the optimized printing parameters is 91.48 MPa, which is slightly less than the theoretical predicted value of 94.34 MPa. After annealing, the tensile strength increases to 98.85 MPa, which is comparable to that for molded PEEK and the porosity decreases to 0.3 from 3.9%. X-ray diffraction results show that all printed and annealed specimens have a high degree of crystallinity. The printed intervertebral lumber device has ultimate compressive load of 13.42 kN.

Originality/value

The optimized printing parameters is suitable for low-price fused deposition modeling machine because it does not involve a table at high temperature and can print the PEEK object with high tensile strength and good crystalline. Annealing parameters offer a good solution for tensile strength improvement.

Details

Rapid Prototyping Journal, vol. 28 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 11 September 2019

Swapnil Vyavahare, Soham Teraiya, Deepak Panghal and Shailendra Kumar

Fused deposition modelling (FDM) is the most economical additive manufacturing technique. The purpose of this paper is to describe a detailed review of this technique. Total 211…

4234

Abstract

Purpose

Fused deposition modelling (FDM) is the most economical additive manufacturing technique. The purpose of this paper is to describe a detailed review of this technique. Total 211 research papers published during the past 26 years, that is, from the year 1994 to 2019 are critically reviewed. Based on the literature review, research gaps are identified and the scope for future work is discussed.

Design/methodology/approach

Literature review in the domain of FDM is categorized into five sections – (i) process parameter optimization, (ii) environmental factors affecting the quality of printed parts, (iii) post-production finishing techniques to improve quality of parts, (iv) numerical simulation of process and (iv) recent advances in FDM. Summary of major research work in FDM is presented in tabular form.

Findings

Based on literature review, research gaps are identified and scope of future work in FDM along with roadmap is discussed.

Research limitations/implications

In the present paper, literature related to chemical, electric and magnetic properties of FDM parts made up of various filament feedstock materials is not reviewed.

Originality/value

This is a comprehensive literature review in the domain of FDM focused on identifying the direction for future work to enhance the acceptability of FDM printed parts in industries.

Details

Rapid Prototyping Journal, vol. 26 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 20 January 2022

Kaifur Rashed, Abdullah Kafi, Ranya Simons and Stuart Bateman

Process parameters in Fused Filament Fabrication (FFF) can affect mechanical and surface properties of printed parts. Numerous studies have reported parametric studies of various…

372

Abstract

Purpose

Process parameters in Fused Filament Fabrication (FFF) can affect mechanical and surface properties of printed parts. Numerous studies have reported parametric studies of various materials using full factorial and Taguchi design of experiments (DoEs). However, a comparison between the two are not well-established in literature. The purpose of this study is to compare full factorial and Taguchi DoEs to determine the effects of FFF process parameters on mechanical and surface properties of Nylon 6/66 copolymer. In addition, perform in-depth failure mechanism analysis to understand why the process parameters affect the responses.

Design/methodology/approach

A full factorial DoE was used to determine the effects of FFF process parameters, such as infill density, infill pattern, layer height and raster angle on responses, such as compressive strength, impact strength, surface roughness and manufacturing time of Nylon 6/66. Micro-computed tomography was used to analyse the impact test samples before and after impact and scanning electron microscope was used to understand the failure mechanism of infill and top layers. Differential scanning calorimetry (DSC) scans of infill and top layers were then taken to determine if a variation in crystallinity existed in different regions of the build.

Findings

Analysis of variance and main effects plots reveal that infill density has the greatest effect on mechanical and surface properties while manufacturing time is most affected by layer height for the polymer used. A 20% reduction in infill increased impact strength by 19% on average, X-ray images of some of the samples before and after impact tests are presented to understand the reason behind the difference. Moreover, DSC revealed a difference in the degree of crystallinity between the infill and top layers for 80% infill density samples. In addition, Taguchi DoE is realized to be a more efficient technique to determine optimum process parameters for responses that vary linearly as it reduces experimental effort significantly while providing mostly accurate results.

Originality/value

To the author’s knowledge, no published paper has reported a comparison between predictive DoE method with full factorial DoE to verify their accuracy in determining the effects of FFF process parameters on properties of printed parts. Also, a theory was developed based on DSC results that as the infill is printed faster, it cools slowly compared to the top layers, and hence the infill is in a less crystalline state when compared to the top layers. This increased the ductility of the infill (of 80% infill samples) and thus improved impact absorption.

1 – 10 of 19
Per page
102050