Search results
1 – 1 of 1Vinodh Srinivasa Reddy, Jagan Kandasamy and Sivasankaran Sivanandam
The study aims to explore how Soret and Dufour diffusions, thermal radiation, joule heating and magnetohydrodynamics (MHD) affect the flow of hybrid nanofluid (Al2O3-SiO2/water…
Abstract
Purpose
The study aims to explore how Soret and Dufour diffusions, thermal radiation, joule heating and magnetohydrodynamics (MHD) affect the flow of hybrid nanofluid (Al2O3-SiO2/water) over a porous medium using a mobile slender needle.
Design/methodology/approach
To streamline the analysis, the authors apply appropriate transformations to change the governing model of partial differential equations into a group of ordinary differential equations. Following this, the authors analyze the transformed equations using the homotopy analysis method within Mathematica software, leading to the derivation of analytical solutions. This study investigates how changing values for porous medium, MHD, Soret and Dufour numbers and thermal radiation influence concentration, temperature and velocity profiles. In addition, the research assesses the effects on local Sherwood number, skin friction and Nusselt number.
Findings
In this investigation, the authors explore the movement of a needle away from its origin (
Practical implications
These results have practical applications across diverse fields, including heat transfer enhancement, energy conversion systems, advanced manufacturing and material processing.
Originality/value
This study is distinctive in its investigation of the flow of hybrid nanofluid (Al2O3-SiO2/water) over a slender, moving needle. The analysis includes joule heating, MHD, porous medium, thermal radiation and considering the effects of Soret and Dufour.
Details