Search results

1 – 4 of 4
Article
Publication date: 9 July 2024

Manigandan Sekar, Vijayaraja Kengaiah, Praveenkumar T.R. and Gunasekar P.

The purpose of this study is to investigate the effect of coaxial swirlers on acoustic emission and reduction of potential core length in jet engines.

Abstract

Purpose

The purpose of this study is to investigate the effect of coaxial swirlers on acoustic emission and reduction of potential core length in jet engines.

Design/methodology/approach

The swirlers are introduced in the form of curved vanes with angles varied from 0° to 130°, corresponding to swirl numbers of 0–1.5. These swirlers are fixed in the annular chamber and tested at different nozzle pressure ratios of 2, 4 and 6.

Findings

The study finds that transonic tones exist for the nonswirl jet, creating an unfavorable effect. However, these screech tones are eliminated by introducing a swirl jet at the nozzle exit. Weak swirl shows a greater reduction in noise than strong swirl at subsonic conditions. In addition, the introduction of swirl jets at all pressure ratios significantly reduces jet noise and core length in supersonic conditions, mitigating the noise created by shockwaves and leading to screech tone-free jet mixing.

Originality/value

The paper provides valuable insights into the use of coaxial swirlers for noise reduction and core length reduction in jet engines, particularly in supersonic conditions.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 24 August 2021

Praveenkumar Thaloor Ramesh, Vijayaraja Kengaiah, Endalkachew Mosisa Gutema, Prabu Velusamy and Dhivya Balamoorthy

The purpose of the study is to design economical shock tube. It is an instrument used for experimental investigations not only related to shock phenomena but also for the behavior…

Abstract

Purpose

The purpose of the study is to design economical shock tube. It is an instrument used for experimental investigations not only related to shock phenomena but also for the behavior of the material when it is subjected to high-speed flow. The material used here in this shock tube is stainless steel ss304 and aluminum. A shock tube consists of two sections, namely, the driver and the driven. The gas in the driven and driver is filled with atmospheric air and nitrogen, respectively, under the predominant condition.

Design/methodology/approach

The focus of the study is on the design and fabrication of shock tubes. a shock tube is a research tool to make an aerodynamic test in the presence of high pressure and temperature by generating moving normal shock waves under controlled conditions.

Findings

The main necessity for instrumentation in the shock tube experiment is to know the velocity of the moving shock wave from which the other parameters can be calculated. the pressure transducers are located in the shock tube in various locations to measure aerodynamic parameters in terms of pressure.

Originality/value

The main objective of this project work is to make an experimental setup to produce supersonic velocity with the readily available material in the market in a highly safe manner.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 October 2021

Nithya Subramani, Sangeetha M., Vijayaraja Kengaiah and Sai Prakash

The purpose of this paper is to find the droplets impact on the airplane wing structure. Two kinds of characteristics of the droplet at different velocity and viscosity are…

Abstract

Purpose

The purpose of this paper is to find the droplets impact on the airplane wing structure. Two kinds of characteristics of the droplet at different velocity and viscosity are assumed. The droplet is assumed to be spherical cubic form and it is injected from the convergent divergent nozzle with a passive control.

Design/methodology/approach

This paper presents the results of a numerical simulation of droplet impact on the horizontal surface. The effects of impact parameters are studied. The splash effect of the droplet also visualized. The results are presented in form of stress, strain, displacement magnitude of the droplet.

Findings

Crosswire is used as passive control. The behavior of the droplet impact is observed based on the kinetic energy and the gravitational forces.

Originality/value

The results predict that smooth particle hydrodynamic designed droplet not only depend on the equation of state of the droplet but also the injection velocity from the nozzle. It also determined that droplet velocity is depending on the viscosity of the fluid.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 August 2022

Niranjana N., Vidhya M., Govindarajan A. and Rajesh K.

Chemical reaction effects are added to the governing equation. This paper aims to get the solution by converting the partial differential equation into an ordinary differential…

Abstract

Purpose

Chemical reaction effects are added to the governing equation. This paper aims to get the solution by converting the partial differential equation into an ordinary differential equation and solve using a perturbation scheme and applying the boundary conditions.

Design/methodology/approach

In this paper, the authors discussed the chemical reaction effects of heat and mass transfer on megnato hydro dynamics free convective rotating flow of a visco-elastic incompressible electrically conducting fluid past a vertical porous plate through a porous medium with suction and heat source. The authors analyze the effect of time dependent fluctuating suction on a visco-elastic fluid flow.

Findings

Using variable parameters of the fluid, the velocity, temperature and concentration of the fluid are analyzed through graphs.

Originality/value

The velocity profile reduces by increasing the values of thermal Grashof number (Gr), mass Grashof number (Gc) and the magnetic parameter (M). On the other hand, the velocity profile gets increased by increasing the permeability parameter (K). The temperature profile decreases by raising the value of Prandtl number (Pr) and frequency of oscillation parameter (ω). However, the source parameter (S) has the opposite effect on the temperature profile. The concentration profile reduces in all points by raising the chemical reaction parameter Kl, Schmidt number Sc, frequency of oscillation ω and the time t.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 4 of 4