Vijaya Prasad B., Arumairaj Paul Daniel, Anand N. and Siva Kumar Yadav
Concrete is a building material widely used for the infrastructural development. Cement is the binding material used for the development of concrete. It is the primary cause of CO2…
Abstract
Purpose
Concrete is a building material widely used for the infrastructural development. Cement is the binding material used for the development of concrete. It is the primary cause of CO2 emission globally. The purpose of this study is to develop sustainable concrete material to satisfy the present need of construction sector. Geopolymer concrete (GPC) is a sustainable concrete developed without the use of cement. Therefore, investigations are being conducted to replace the cement by 100% with high calcium fly ash (FA) as binding material.
Design/methodology/approach
High calcium FA is used as cementitious binder, sodium hydroxide (NaOH) and sodium silicates (Na2SiO3) are used as alkaline liquids for developing the GPC. Mix proportions with different NaOH molarities of 4, 6, 8 and 10 M are considered to attain the appropriate mix. The method of curing adopted is ambient and oven curing. Workability, compressive strength and microstructure characteristics of GPC are analysed and presented.
Findings
An increase of NaOH in the mix decreases the workability. Compressive strength of 29 MPa is obtained for Mix-I with 8 M under ambient curing. A polynomial relationship is obtained to predict the compressive strength of GPC. Scanning electron microscope analysis is used to confirm the geo-polymerisation process in the microstructure of concrete.
Originality/value
This research work focuses on finding some alternative cementitious material for concrete that can replace ordinary portland cement (OPC) to overcome the CO2 emission owing to the utilisation of cement in the construction industry. An attempt has been made to use the waste material (high calcium FA) from thermal power plant for the production of GPC. GPC concrete is the novel building material and alternative to conventional concrete. It is the ecofriendly product contributing towards the improvement of the circular economy in the construction industry. There are several factors that affect the property of GPC such as type of binder material, molarity of activator solution and curing condition. The novelty of this work lies in the approach of using locally available high calcium FA along with manufactured sand for the development of GPC. As this approach is rarely investigated, to prove the attainment of compressive strength of GPC with high calcium FA, an attempt has been made during the present investigation. Other influencing parameter which affects the strength gain has also been analysed in this paper.
Details
Keywords
Vijaya Prasad Burle, Tattukolla Kiran, N. Anand, Diana Andrushia and Khalifa Al-Jabri
The construction industries at present are focusing on designing sustainable concrete with less carbon footprint. Considering this aspect, a Fibre-Reinforced Geopolymer Concrete…
Abstract
Purpose
The construction industries at present are focusing on designing sustainable concrete with less carbon footprint. Considering this aspect, a Fibre-Reinforced Geopolymer Concrete (FGC) was developed with 8 and 10 molarities (M). At elevated temperatures, concrete experiences deterioration of its mechanical properties which is in some cases associated with spalling, leading to the building collapse.
Design/methodology/approach
In this study, six geopolymer-based mix proportions are prepared with crimped steel fibre (SF), polypropylene fibre (PF), basalt fibre (BF), a hybrid mixture consisting of (SF + PF), a hybrid mixture with (SF + BF), and a reference specimen (without fibres). After temperature exposure, ultrasonic pulse velocity, physical characteristics of damaged concrete, loss of compressive strength (CS), split tensile strength (TS), and flexural strength (FS) of concrete are assessed. A polynomial relationship is developed between residual strength properties of concrete, and it showed a good agreement.
Findings
The test results concluded that concrete with BF showed a lower loss in CS after 925 °C (i.e. 60 min of heating) temperature exposure. In the case of TS, and FS, the concrete with SF had lesser loss in strength. After 986 °C and 1029 °C exposure, concrete with the hybrid combination (SF + BF) showed lower strength deterioration in CS, TS, and FS as compared to concrete with PF and SF + PF. The rate of reduction in strength is similar to that of GC-BF in CS, GC-SF in TS and FS.
Originality/value
Performance evaluation under fire exposure is necessary for FGC. In this study, we provided the mechanical behaviour and physical properties of SF, PF, and BF-based geopolymer concrete exposed to high temperatures, which were evaluated according to ISO standards. In addition, micro-structural behaviour and linear polynomials are observed.
Details
Keywords
Bahareh Nikmehr, Bidur Kafle and Riyadh Al-Ameri
This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in…
Abstract
Purpose
This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in concrete. It is vital as the old paste attached to the RCA weakens its structure. It is due to the porous structure of the RCA with cracks, weakening the interfacial transition zone (ITZ) between the RCA and binding material, negatively impacting the concrete's properties. To this end, various methods for reinforcement of the RCA, cleaning the RCA's old paste and enhancing the quality of the RCA-based concrete without RCA modification are studied in terms of environmental effects, cost and technical matters. Furthermore, this research sought to identify gaps in knowledge and future research directions.
Design/methodology/approach
The review of the relevant journal papers revealed that various methods exist for improving the properties of RCAs and RCA-based concrete. A decision matrix was developed and implemented for ranking these techniques based on environmental, economic and technical criteria.
Findings
The identified methods for reinforcement of the RCA include accelerated carbonation, bio deposition, soaking in polymer emulsions, soaking in waterproofing admixture, soaking in sodium silicate, soaking in nanoparticles and coating with geopolymer slurry. Moreover, cleaning the RCA's old paste is possible using acid, water, heating, thermal and mechanical treatment, thermo-mechanical and electro-dynamic treatment. Added to these treatment techniques, using RCA in saturated surface dry (SSD) mixing approaches and adding fibres or pozzolana enhance the quality of the RCA-based concrete without RCA modification. The study ranked these techniques based on environmental, economic and technical criteria. Ultimately, adding fibres, pozzolana and coating RCA with geopolymer slurry were introduced as the best techniques based on the nominated criteria.
Practical implications
The study supported the need for better knowledge regarding the existing treatment techniques for RCA improvement. The outcomes of this research offer an understanding of each RCA enrichment technique's importance in environmental, economic and technical criteria.
Originality/value
The practicality of the RCA treatment techniques is based on economic, environmental and technical specifications for rating the existing treatment techniques.
Details
Keywords
Sandeep Sathe, Shahbaz Dandin, Makrand Wagale and Pankaj R. Mali
This study aims to investigate and compare the influence of various fiber types (polypropylene, steel and glass) on the workability, mechanical properties, ductility, impact…
Abstract
Purpose
This study aims to investigate and compare the influence of various fiber types (polypropylene, steel and glass) on the workability, mechanical properties, ductility, impact resistance, durability and microscopic properties of geopolymer concrete (GPC) with conventional concrete (CC).
Design/methodology/approach
The CC and GPC of M40 grade were incorporated with an optimum 1% of fibers and superplasticizers were added in a ratio of 2% by weight of the geopolymer binder. The slump cone and compaction factor tests were performed to analyze the workability. To evaluate the mechanical performance of GPC, the compressive strength (CS), split tensile strength (STS), flexural strength (FS) and modulus of elasticity (MOE) tests were performed. A falling weight impact test was performed to determine the impact energy (IE) absorbed, the number of blows for initial cracking, the number of blows for complete failure and the ductility aspect.
Findings
Fibers and superplasticizers significantly improve GPC properties. The study found that fibers reduce the brittleness of concrete, improving the impact and mechanical strength compared to similar-grade CC. The steel fibers-reinforced GPC has a 15.42% higher CS than CC after three days, showing a faster CS gain. After 28 days, GPC and CC have MOE in the range of 23.9–25.5 GPa and 28.8–30.9 GPa, respectively. The ultimate IE of the GPC with fibers was found to be 5.43% to 21.17% higher than GPC without fibers.
Originality/value
The findings of the study can be used to explore different combinations of raw materials and mix designs to optimize the performance of GPC.
Details
Keywords
Jacob Mhlanga, Theodore C. Haupt and Claudia Loggia
This paper aims to explore the intellectual structure shaping the circular economy (CE) discourse within the built environment in Africa.
Abstract
Purpose
This paper aims to explore the intellectual structure shaping the circular economy (CE) discourse within the built environment in Africa.
Design/methodology/approach
The study adopted a bibliometric analysis approach to explore the intellectual structure of CE in the built environment in Africa. The authors collected 31 papers published between 2005 and 2021 from the Scopus database and used VOSviewer for data analysis.
Findings
The findings show that there are six clusters shaping the intellectual structure: demolition, material recovery and reuse; waste as a resource; cellulose and agro-based materials; resilience and low-carbon footprint; recycling materials; and the fourth industrial revolution. The two most cited scholars had three publications each, while the top journal was Resources, Conservation and Recycling. The dominant concepts included CE, sustainability, alternative materials, waste management, lifecycle, demolition and climate change. The study concludes that there is low CE research output in Africa, which implies that the concept is either novel or facing resistance.
Research limitations/implications
The data were drawn from one database, Scopus; hence, adoption of alternative databases such as Web of Science, Google Scholar and Dimensions could potentially have yielded a higher number of articles for analysis which potentially would result in different conclusions on the subject understudy.
Originality/value
This study made a significant contribution by articulating the CE intellectual structure in the built environment, identified prominent scholars and academic platforms responsible for promoting circularity in Africa.
Details
Keywords
Laxmi Prasad Pant, Helen Hambly-Odame, Andy Hall and Rasheed Sulaiman V.
Despite favourable agro-ecological conditions and being the largest international mango producer, India still struggles to build competence in sustainable mango production and…
Abstract
Purpose
Despite favourable agro-ecological conditions and being the largest international mango producer, India still struggles to build competence in sustainable mango production and post-harvest. The purpose of this paper is to contribute to the literature on innovation capacity development, and to explore aspects of innovation systems ideas in the analysis of mango production and marketing by small-scale farmers in the South Indian state of Andhra Pradesh.
Design/methodology/approach
This paper uses case study research methods to an analysis of the sector ' s recent history combined with an empirical account of systems thinking on integrating technology supply chains and commodity supply chains.
Findings
Findings suggest that the case of mango production and post-harvest in the Krishna district is a dismal one and the remedial actions to strengthen mango innovation systems in the district relate to aspects of capacity development to promote upward spiral of learning and innovation, and involve multistakeholder processes to integrate the supply chains of technologyand commodity.
Originality/value
This paper, with its aim to contribute to the literature on innovation capacity development, brings together conventionally distinct bodies of literature on strengthening innovation systems and developing stakeholder capacity. The value of this paper lies on how it addresses technology supply and commodity supply issues in the analysis of competence challenges to strengthening mango innovation systems performance.
Details
Keywords
M. Vijaya Kumar, Prasad Sampath, S. Suresh, S.N. Omkar and Ranjan Ganguli
This paper aims to present the design of a stability augmentation system (SAS) in the longitudinal and lateral axes for an unstable helicopter.
Abstract
Purpose
This paper aims to present the design of a stability augmentation system (SAS) in the longitudinal and lateral axes for an unstable helicopter.
Design/methodology/approach
The feedback controller is designed using linear quadratic regulator (LQR) control with full state feedback and LQR with output feedback approaches. SAS is designed to meet the handling qualities specification known as Aeronautical Design Standard (ADS‐33E‐PRF). A helicopter having a soft inplane four‐bladed hingeless main rotor and a four‐bladed tail rotor with conventional mechanical controls is used for the simulation studies. In the simulation studies, the helicopter is trimmed at hover, low speeds and forward speeds flight conditions. The performance of the helicopter SAS schemes are assessed with respect to the requirements of ADS‐33E‐PRF.
Findings
The SAS in the longitudinal axis meets the requirement of the Level 1 handling quality specifications in hover and low speed as well as for forward speed flight conditions. The SAS in the lateral axis meets the requirement of the Level 2 handling quality specifications in both hover and low speed as well as for forward speed flight conditions. The requirements of the inter axis coupling is also met and shown for the coupled dynamics case. The SAS in lateral axis may require an additional control augmentation system or adaptive control to meet the Level 1 requirements.
Originality/value
The study shows that the design of a SAS using LQR control algorithm with full state and output feedbacks can be used to meet ADS‐33 handling quality specifications.
Details
Keywords
The purpose of this paper is to present various quality constructs, their application, success and shortcomings, in higher education (HE) services.
Abstract
Purpose
The purpose of this paper is to present various quality constructs, their application, success and shortcomings, in higher education (HE) services.
Design/methodology/approach
This paper aims at reviewing the quality constructs in higher education services through a general review. The paper is organised to highlight different quality practices which higher education institutions have followed from 1990s till date. The paper is scoped to discuss about total quality management (TQM), Kaizen, Six Sigma, Lean and Lean Six Sigma (LSS) comparing their value addition and shortcoming in imbibing quality into the higher education. Publications indexed in Scopus database are considered for the review. The focus of the search in the selected publications was to identify the success and shortcomings of various quality constructs in HE services.
Findings
The requirement for a quality construct in higher education industry is an important finding of the paper. Alongside this, the reasons behind the shortcoming of quality practices used in higher education system were highlighted. The findings include the opportunities for future research for imbibing quality culture in HE.
Research limitations/implications
The literature discussed in the part of the paper is restricted to TQM, Kaizen, Six Sigma, Lean and LSS. Though the usage of such quality practices in HE originated in 1990s, there is no one robust sustainable practice till date, which proved to be a pacesetter. This paper validates this assertion, which helps both academicians and practitioners with a new perspective.
Originality/value
This paper would serve as an excellent resource for both academicians and practitioners to understand the history of quality which contributed to the improvement in HE services, and how the quality excellence has evolved over the years. The paper concludes with a discussion on opportunities for future research to develop quality frameworks for HE services.
Details
Keywords
S.R. Vishwanath and Vijaya L. Narapareddy
The case highlights a $1.4 billion fraud committed by the founder of a NYSE listed, Information Technology Services firm in India. In response to the crisis, the Indian government…
Abstract
Case description
The case highlights a $1.4 billion fraud committed by the founder of a NYSE listed, Information Technology Services firm in India. In response to the crisis, the Indian government appointed an interim board to find a strategic investor in the company. The case traces the events leading to the fall of the company. Students are asked to analyze the governance and intermediation failures, assess the financial position of the company and to estimate the intrinsic value of the company from an acquirer's perspective.