Search results
1 – 1 of 1Kavimani V., Kumaran S., Vignesh Ponnusamy and Navneet Kumar
This study aims to analyze the effect of interrupted rolling on microstructures and mechanical properties of Mg–8Li–xGr composite is investigated.
Abstract
Purpose
This study aims to analyze the effect of interrupted rolling on microstructures and mechanical properties of Mg–8Li–xGr composite is investigated.
Design/methodology/approach
Graphene reinforced composite was developed by using stir casting route and rolled with different reduction in thickness such as 50, 75 and 90%. Microstructure, hardness and tensile characteristics of the rolled samples were evaluated.
Findings
Investigation on microstructures of rolled composite depicts that increase in rolling reduction % resulted in fine elongated grains and decreased aspect ratio. Further, it was also observed that increasing percentage of rolling reduction promotes the dissolution of ß Li phase and as a result the ductility of composite decreases. Interrupted rolled samples showcase higher hardness when compared with as-cast composite. Composite rolled with 90% reduction displays higher yield strength of 219 MPa. Hardening capacity of composites decreases with increase in reduction percentage due to the effective reduction in grain size.
Originality/value
Investigation on the influence of interrupted rolling on microstructures and mechanical properties of Mg graphene composite. The in-depth understanding of this will help to improve its wide spread application.
Details