Pedro Jácome de Moura Jr. and Carlo Gabriel Porto Bellini
The purpose of this study is to contribute to the literature on team management and flow theory by framing shared flow in teams (SFT) as a unique construct of much interest for…
Abstract
Purpose
The purpose of this study is to contribute to the literature on team management and flow theory by framing shared flow in teams (SFT) as a unique construct of much interest for team performance, as well as by proposing team vibration as a metaphor and measurable property of SFT.
Design/methodology/approach
An inductive approach is used to identify the occurrence of SFT by means of team vibration, and scale development procedures are used to offer an instrument to measure team vibration.
Findings
The current state of knowledge does not allow researchers and team leaders to assume that flow in teams depends on team members being in full flow too. Accordingly, it is shown that SFT is an emergent phenomenon of the complex interaction of team members, thus not corresponding to the mere aggregation of flow of individual team members. Moreover, it is also shown that the emergent property of team vibration is an efficient surrogate measure for SFT because it enables better communication in measurement.
Practical implications
Team managers should hire professionals that contribute to high levels of vibration in teams because this is expected to leverage desirable team processes and outcomes. Such individuals possess an ideal balance of individual and group focus. However, the authors warn that managers should be careful in assuming that individuals in full state of flow are necessary for the occurrence of flow in teams.
Originality/value
This study frames SFT as a unique construct in the literature of flow in groups, in addition to developing a metaphor and surrogate measure (team vibration) and a measurement instrument.
Details
Keywords
Venkata Suresh Bade, Srinivasa Rao P. and Govinda Rao P.
The purpose of this paper is to investigate the prominence of mechanical excitations at the time of welding. In the past years, the process of welding technology has expanded its…
Abstract
Purpose
The purpose of this paper is to investigate the prominence of mechanical excitations at the time of welding. In the past years, the process of welding technology has expanded its influence in manufacturing. The crucial drawback of conventional welding is prompted by internal stresses and distortions, which is the focal reason for weld defects. These weld defects can be diminished by the process called post-weld heat treatment (PWHT), which consumes more working hours and needs skilled workers. To replace these PWHT processes, mechanical vibrations are introduced during the process of welding to diminish these weld defects.
Design/methodology/approach
In the current research, the mechanical vibrations are transferred to weld-pool through vibro-motor and DC motor connected to the electrode. As per standards, the tensile test specimens were prepared for welding with different voltages of vibro-motor and DC motor respectively. The weld joints were tested for tensile strength and analyzed the microstructure at the fusion zone.
Findings
Melt-ability at fusion zone of 1018 mild steel was investigated by the single-stroke intense heat process of fusion welding. It is observed that the mechanical vibrations technique has a profound influence on the enhancement of the fusion zone characteristics and grain structure. The peak value of the tensile strength is observed at 100 s of vibration, 190 V of vibro-motor voltage and 18 V of electrode voltage. The tensile strength of the welded joints with vibrations is increased up to 22.64% when it is compared with conventional welding. The enhancement of the tensile strength of the weld bead was obtained because of the formation of fine grain structure. So, mechanical vibrations are identified as the most convenient method for improving the mild steel alloys weld quality.
Originality/value
A novel approach called mechanical vibrations during the process of welding is implemented for fusion zone refinement.
Details
Keywords
Venkata Suresh Bade, Srinivasa Rao P. and Govinda Rao P.
The purpose of this study is to explore the importance of vibrations during welding process. In recent years, welding has gained its supremacy in the field of production. The main…
Abstract
Purpose
The purpose of this study is to explore the importance of vibrations during welding process. In recent years, welding has gained its supremacy in the field of production. The main set back of the welding process is induced residual stresses, which is a major cause for many welding defects. These defects can be minimized by post-weld heat treatment methods, which is a time consuming and laborious process. In the recent past, a technique of exciting the weld-pool by vibrating the work-pieces was also adopted to minimize the above-mentioned stresses. A novel technique of electrode vibration is another effective way of transferring the vibrations to the weld-pool to influence the induced residual stress.
Design/methodology/approach
In this research, the electrode is vibrated with the help of an electric motor. The specimens were prepared as per American Society for Testing and Materials standards and welded with varying frequencies and voltages. The weldments are tested for hardness along the weld bead and heat affected zone, also the microstructure of the fusion zone is analyzed.
Findings
It is observed that there is an improvement in the hardness because of the grain refinement, which is a result of proper excitation of the weld-pool. It is observed that there is an improvement in hardness test up to 28.69% when compared with the conventional welding process. The peak value of hardness is observed at a frequency of 4,450 Hz. This is because of fine grain structure at this frequency, which is observed through the microstructure analysis.
Originality/value
A novel technique is introduced to refine the weld-pool through electrode vibrations. To improve the hardness of the welded joints, vibrations play a major role by refining the grain structure. The vibrations are imparted with the help of a special equipment attached to the electrode.
Details
Keywords
Rafael Castro-Triguero, Enrique Garcia-Macias, Erick Saavedra Flores, M.I. Friswell and Rafael Gallego
The purpose of this paper is to capture the actual structural behavior of the longest timber footbridge in Spain by means of a multi-scale model updating approach in conjunction…
Abstract
Purpose
The purpose of this paper is to capture the actual structural behavior of the longest timber footbridge in Spain by means of a multi-scale model updating approach in conjunction with ambient vibration tests.
Design/methodology/approach
In a first stage, a numerical pre-test analysis of the full bridge is performed, using standard beam-type finite elements with isotropic material properties. This approach offers a first structural model in which optimal sensor placement (OSP) methodologies are applied to improve the system identification process. In particular, the effective independence (EFI) method is used to determine the optimal locations of a set of sensors. Ambient vibration tests are conducted to determine experimentally the modal characteristics of the structure. The identified modal parameters are compared with those values obtained from this preliminary model. To improve the accuracy of the numerical predictions, the material response is modeled by means of a homogenization-based multi-scale computational approach. In a second stage, the structure is modeled by means of three-dimensional solid elements with the above material definition, capturing realistically the full orthotropic mechanical properties of wood. A genetic algorithm (GA) technique is adopted to calibrate the micromechanical parameters which are either not well-known or susceptible to considerable variations when measured experimentally.
Findings
An overall good agreement is found between the results of the updated numerical simulations and the corresponding experimental measurements. The longitudinal and transverse Young's moduli, sliding and rolling shear moduli, density and natural frequencies are computed by the present approach. The obtained results reveal the potential predictive capabilities of the present GA/multi-scale/experimental approach to capture accurately the actual behavior of complex materials and structures.
Originality/value
The uniqueness and importance of this structure leads to an intensive study of its structural behavior. Ambient vibration tests are carried out under environmental excitation. Extraction of modal parameters is obtained from output-only experimental data. The EFI methodology is applied for the OSP on a large-scale structure. Information coming from several length scales, from sub-micrometer dimensions to macroscopic scales, is included in the material definition. The strong differences found between the stiffness along the longitudinal and transverse directions of wood lumbers are incorporated in the structural model. A multi-scale model updating approach is carried out by means of a GA technique to calibrate the micromechanical parameters which are either not well-known or susceptible to considerable variations when measured experimentally.
Details
Keywords
Sathiyamoorthy Margabandu and Senthil Kumar Subramaniam
The study aims to investigate the influence of fabric hybridization, stacking sequences and matrix materials on the tensile strength and damping behavior of jute/carbon reinforced…
Abstract
Purpose
The study aims to investigate the influence of fabric hybridization, stacking sequences and matrix materials on the tensile strength and damping behavior of jute/carbon reinforced hybrid composites.
Design/methodology/approach
The hybrid composites were fabricated with different sequences of fabric plies in epoxy and polyester matrix using a hand layup technique. The tensile and vibration characteristics were evaluated on the hybrid laminated composite models using finite element analysis (FEA), and the results were validated experimentally according to ASTM standards. The surface morphology of the fractured specimens was studied using the scanning electron microscope.
Findings
The experimental results revealed that the position of jute layers in the hybrid composites has a significant influence on the tensile strength and damping behavior. The hybrid composite with jute fiber at the surface sides and carbon fibers at the middle exhibited higher tensile strength with superior damping properties. Further, it is found that the experimental results are in good coherence with the FEA results.
Originality/value
The less weight and low-cost hybrid composites were fabricated by incorporating the jute and carbon fabrics in interply configurations. The influences of fabric hybridization, stacking arrangements and matrix materials on the tensile and vibration behavior of jute/carbon hybrid composites have been numerically evaluated and the results were experimentally validated.
Details
Keywords
This study examines two distinct bearing stiffness calculation methods, both of which are based on the displacement-load function. Previous research typically incorporated one…
Abstract
Purpose
This study examines two distinct bearing stiffness calculation methods, both of which are based on the displacement-load function. Previous research typically incorporated one type of bearing stiffness into their system mechanics or vibration analysis. However, these two methods of calculating stiffness lead to different vibration models. This implies that the choice for vibration investigation is not merely about selecting one of the two types of stiffness, but also about how to appropriately implement that chosen stiffness within a model. The primary objective of this work is to compare these two methods of bearing calculation and to discuss the suitable applications of each method in both static and dynamic analyses.
Design/methodology/approach
This study compares two distinct methods for calculating bearing stiffness. It explores the relationships between varying bearing stiffnesses, their internal structures, and contact features. Furthermore, it examines the impact of external loads on the static properties and dynamic characteristics of different bearing stiffnesses. Finally, based on the outcomes observed under various operating conditions, the study discusses the suitability of each method for static and dynamic analysis.
Findings
Mean stiffness is more suitable for calculating load transmissibility in a static state or capturing the delivery performance at instantaneous equilibrium positions in a dynamic state. Since the variation of the equilibrium positions is ignored, the alternating stiffness model is better suited for capturing the fluctuating properties of the vibration behaviors, especially under variable external load conditions.
Originality/value
We compare the two bearing calculation methods and discuss the appropriate applications of each method for static and dynamic analysis.
Details
Keywords
The purpose of this paper is to discuss published research in rotorcraft which has taken place in India during the last ten years. The helicopter research is divided into the…
Abstract
Purpose
The purpose of this paper is to discuss published research in rotorcraft which has taken place in India during the last ten years. The helicopter research is divided into the following parts: health monitoring, smart rotor, design optimization, control, helicopter rotor dynamics, active control of structural response (ACSR) and helicopter design and development. Aspects of health monitoring and smart rotor are discussed in detail. Further work needed and areas for international collaboration are pointed out.
Design/methodology/approach
The archival journal papers on helicopter engineering published from India are obtained from databases and are studied and discussed. The contribution of the basic research to the state‐of‐the‐art in helicopter engineering science is brought out.
Findings
It is found that strong research capabilities have developed in rotor system health and usage monitoring, rotor blade design optimization, ACSR, composite rotor blades and smart rotor development. Furthermore, rotorcraft modeling and analysis aspects are highly developed with considerable manpower available and being generated in these areas.
Practical implications
Two helicopter projects leading to the “advanced light helicopter” and “light combat helicopter” have been completed by Hindustan Aeronautics Ltd These helicopter programs have benefited from the basic research and also provide platforms for further basic research and deeper industry academic collaborations. The development of well‐trained helicopter engineers is also attractive for international helicopter design and manufacturing companies. The basic research done needs to be further developed for practical and commercial applications.
Originality/value
This is the first comprehensive research on rotorcraft research in India, an important emerging market, manufacturing and sourcing destination for the industry.
Details
Keywords
Yingli Li, Chenwei Wu, Yong Peng and Xudong Jiang
In order to investigate the vibration reduction properties of a three-dimensional elastic metastructure with spherical cavities at low frequencies.
Abstract
Purpose
In order to investigate the vibration reduction properties of a three-dimensional elastic metastructure with spherical cavities at low frequencies.
Design/methodology/approach
The bandgap characteristics of a three-dimensional elastic metastructure with spherical cavities are studied based on analytical and numerical approaches.
Findings
The results of both method revealed that the vibration of the vertexes masses is important for opening bandgaps. The fact that the big sphere cavity radius or short side length of the cube unit leads to a wider bandgap, is noteworthy.
Originality/value
This research provides theoretical guidance for realizing the vibration attenuation application of EMs in practical engineering.
Details
Keywords
Mahdi Shayanmehr and Omid Basiri
In this paper, the important aspects of vibration analysis of carbon nanotubes (CNTs) as nano-resonators are studied. This study has covered the important nonlinear phenomena such…
Abstract
Purpose
In this paper, the important aspects of vibration analysis of carbon nanotubes (CNTs) as nano-resonators are studied. This study has covered the important nonlinear phenomena such as jump super-harmonic and chaotic behavior. CNT is modeled by using the modified nonlocal theory (MNT).
Design/methodology/approach
In previous research studies, the effects of CNT’s rotary inertia, stiffness and shear modulus of the medium were neglected. So by considering these terms in MNT, a comprehensive model of vibrational behavior of carbon nanotube as a nanosensor is presented. The nanotube is modeled as a nonlocal nonlinear beam. The first eigenmode of an undamped simply supported beam is used to extract the nonlinear equation of CNT. Harmonic balance method is used to solve the equation, while to study its super-harmonic behavior, higher-order harmonic terms were used.
Findings
In light of frequency response equation, jump phenomenon and chaotic behavior of the nanotube with respect to the amplitude of excitation are investigated. Also in each section of the study, the effects of elastic medium and nonlocal parameters on the vibration behavior of nanotube are investigated. Furthermore, parts of the results in linear and nonlinear cases were compared with results of other references.
Originality/value
The present modification of the nonlocal theory is so important and useful for accurate investigation of the vibrational behavior of nano structures such as a nano-resonator.
Details
Keywords
The purpose of this paper is to study the buckling and the vibration of the beam induced by atom/molecule adsorption using the nonlocal Euler‐Bernoulli beam model with initial…
Abstract
Purpose
The purpose of this paper is to study the buckling and the vibration of the beam induced by atom/molecule adsorption using the nonlocal Euler‐Bernoulli beam model with initial axial stress.
Design/methodology/approach
The nonlocal parameter associated with adsorbed mass and bending rigidity variations of the beam induced by adsorbates are taken into account, and the buckling and dynamic behaviors are obtained via the Hamilton's principle, in which the potential energy between adsorbates and surfaces of the beam, the bending energy, the external work and the kinetic energy are summed as the Lagrangian function.
Findings
The results show that, for both buckling and resonant frequency, the nonlocal effect should be considered when the beam scales down to several hundreds of nanometres, especially for higher mode numbers.
Originality/value
The present paper gives the exact expressions for the buckling and resonant frequency of a simple‐supported nonlocal beam with initial axial stress. Different from previous works, the mass increasing and bending rigidity of the beam are found size‐dependent (nonlocal effect), resulting in possible different static and dynamic behaviors of the beam when atom/molecular adsorption occurs. The exact expressions obtained for the buckling and resonant frequency may be helpful to the design and application of micro‐ and nanobeam‐based sensors/resonators.