Rajkumar Rajendran, Karuppuraja Muthukrishnan and Vedhi Chinnapiyan
The purpose of this study is to investigate the presence of silicon dioxide (SiO2) nanoparticles in o-toluidine monomer as a reactant and ammonium persulfate as an oxidant to…
Abstract
Purpose
The purpose of this study is to investigate the presence of silicon dioxide (SiO2) nanoparticles in o-toluidine monomer as a reactant and ammonium persulfate as an oxidant to obtain the poly(o-toluidine) (POT)/SiO2 nanocomposites by oxidative polymerization method.
Design/methodology/approach
Fourier transformation infrared spectroscopy, X-ray diffraction and field emission scanning electron microscopy were used to characterize the structural properties of the composite. POT/SiO2 nanocomposites were mixed with acrylic resin through a solution mixing method and the composites were coated onto the surface of mild steel. Electrochemical measurements were used to determine the corrosion protection efficiency (P.E.%) of polymer composite coatings using 3.5% NaCl solution as corrosion environment.
Findings
The results obtained reveals that the POT/SiO2/acrylic resin composite coatings have got higher corrosion P.E.% than that of POT/acrylic resin coatings.
Originality/value
The formation of uniformly passive layer in the POT/SiO2 composite was used to enhance the P.E.% on mild steel surface. The POT/SiO2/acrylic resin nanocomposites showed effective anticorrosive behavior on mild steel in 3.5% NaCl solution.
Details
Keywords
Chao Li, Jin Gao, Qingqing Xu, Chao Li, Xuemei Yang, Kui Xiao and Xiangna Han
The color painting of ancient buildings has high historical and artistic value but is prone to aging due to long-term outdoor exposure. The purpose of this study is to develop a…
Abstract
Purpose
The color painting of ancient buildings has high historical and artistic value but is prone to aging due to long-term outdoor exposure. The purpose of this study is to develop a new type of sealing coating to mitigate the impact of ultraviolet (UV) light on color painting.
Design/methodology/approach
The new coating was subjected to a 500-h UV-aging test. Compared with the existing acrylic resin Primal AC33, the UV aging behavior of the new coating, such as color difference and gloss, was studied with aging time. The Fourier infrared spectra of the coatings were analyzed after the UV-aging test.
Findings
Compared with AC33, the antiaging performance of SF8 was substantially improved. SF8 has a lower color difference value and better light retention and hydrophobicity. The Fourier transform infrared spectroscopy results showed that the C-F bond and Si-O bonds in the resin of the optimized sealing coating protected the main chain C-C structure from degradation during the aging process; thus, the resin maintained good stability. The hindered amine light stabilizer TN292 added to the coating inhibited the antiaging process by trapping active free radicals.
Originality/value
To address the problem of UV aging of oil-decorated colored paintings, a new type of sealing coating with excellent antiaging properties was developed, laying the foundation for its demonstration application on the surface of ancient buildings.