Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Available. Open Access. Open Access
Article
Publication date: 25 June 2024

Stylianos Karatzas, Vasiliki Lazari, Kalliopi Fouseki, Valeria Natalia Pracchi and Evagelos Balaskas

Heritage building management serves as a potent catalyst for sustainability, yet it poses a distinctive set of challenges. Achieving a harmonious balance between conserving the…

876

Abstract

Purpose

Heritage building management serves as a potent catalyst for sustainability, yet it poses a distinctive set of challenges. Achieving a harmonious balance between conserving the building's historical and cultural value and ensuring modern functionality and safety remains a primary concern. The present work proposes a socio-technical approach to the development and use of a digital twin (DT) that will integrate social data related to the use of heritage buildings with building and environmental data.

Design/methodology/approach

The paper presents a logical and systematic joined-up management framework to the targeted heritage buildings, according to a “Whole Building” approach. Our approach is informed by the underpinning assumption that a heritage building and even more a heritage neighborhood is a socio-technical, complex and dynamic system, the change of which depends on the dynamic interconnections of materials, competences, resources, values, space/environment, senses and time.

Findings

A heritage dynamics approach is adopted to unfold the dynamic nature of heritage and to better inform decisions that can be made in the present and future, achieving people-centered and place-based heritage management. This proposition underlines the heritage transformation as a complex systemic process that consists of nonlinear interconnections of multiple heterogeneous factors (values, senses, attitudes, spaces and resources).

Originality/value

This paper presents a multi-level framework of DTs that interact hierarchically to comprehensively understand, assimilate and seamlessly integrate intricate contexts, even when faced with conflicting conditions from diverse cultural heritage entities. This paper outlines the importance of the iterative system dynamics (SD) approach, which enables adaptive management and ensures the resilience of cultural heritage over time.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1266

Keywords

Access Restricted. View access options
Article
Publication date: 18 September 2019

Daniel Herrera-Avellanosa, Franziska Haas, Gustaf Leijonhufvud, Tor Brostrom, Alessia Buda, Valeria Pracchi, Amanda Laurel Webb, Walter Hüttler and Alexandra Troi

Improving the energy performance of historic buildings has the potential to reduce carbon emissions while protecting built heritage through its continued use. However…

661

Abstract

Purpose

Improving the energy performance of historic buildings has the potential to reduce carbon emissions while protecting built heritage through its continued use. However, implementing energy retrofits in these buildings faces social, economic, and technical barriers. The purpose of this conceptual paper is to present the approach of IEA-SHC Task 59 to address some of these barriers.

Design/methodology/approach

Task 59 aims to achieve the lowest possible energy demand for historic buildings. This paper proposes a definition for this concept and identifies three key socio-technical barriers to achieving this goal: the decision-makers’ lack of engagement in the renovation of historic buildings, a lack of support during the design process and limited access to proven retrofit solutions. Two methods – dissemination of best-practice and guidelines – are discussed in this paper as critical approaches for addressing the first two barriers.

Findings

An assessment of existing databases indicates a lack of best-practice examples focused specifically on historic buildings and the need for tailored information describing these case studies. Similarly, an initial evaluation of guidelines highlighted the need for process-oriented guidance and its evaluation in practice.

Originality/value

This paper provides a novel definition of lowest possible energy demand for historic buildings that is broadly applicable in both practice and research. Both best-practices and guidelines are intended to be widely disseminated throughout the field.

Details

International Journal of Building Pathology and Adaptation, vol. 38 no. 4
Type: Research Article
ISSN: 2398-4708

Keywords

1 – 2 of 2
Per page
102050