Dinesh Kumar Anguraj, S. Balasubramaniyan, E. Saravana Kumar, J. Vakula Rani and M. Ashwin
The purpose of the research is to concentrate on the most important smart metropolitan applications which are smart living, smart security and smart maintainable. In that, Power…
Abstract
Purpose
The purpose of the research is to concentrate on the most important smart metropolitan applications which are smart living, smart security and smart maintainable. In that, Power management and security is a most important problem in the current metropolitan situation.
Design/methodology/approach
A smart metropolitan area utilizes recent innovative technologies to improve its living, security and maintainable. The aim of this study is to recognize and resolve the difficulties in metropolitan area applications.
Findings
The main aim of this study is to reduce the metropolitan foremost energy consumption, to recharge the electric vehicles and to increase the lifetime of smart street lights.
Originality/value
The hybrid renewable energy street light applies smart resolutions to substructure and facilities in rural and metropolitan areas to create them well. This study will be applying smart metropolitan solar and wind turbine street light using renewable energy for existing areas. In future, the smart street light work will be implemented everywhere else.
Details
Keywords
Sivaraman Eswaran, Vakula Rani, Daniel D., Jayabrabu Ramakrishnan and Sadhana Selvakumar
In the recent era, banking infrastructure constructs various remotely handled platforms for users. However, the security risk toward the banking sector has also elevated, as it is…
Abstract
Purpose
In the recent era, banking infrastructure constructs various remotely handled platforms for users. However, the security risk toward the banking sector has also elevated, as it is visible from the rising number of reported attacks against these security systems. Intelligence shows that cyberattacks of the crawlers are increasing. Malicious crawlers can crawl the Web pages, crack the passwords and reap the private data of the users. Besides, intrusion detection systems in a dynamic environment provide more false positives. The purpose of this research paper is to propose an efficient methodology to sense the attacks for creating low levels of false positives.
Design/methodology/approach
In this research, the authors have developed an efficient approach for malicious crawler detection and correlated the security alerts. The behavioral features of the crawlers are examined for the recognition of the malicious crawlers, and a novel methodology is proposed to improvise the bank user portal security. The authors have compared various machine learning strategies including Bayesian network, support sector machine (SVM) and decision tree.
Findings
This proposed work stretches in various aspects. Initially, the outcomes are stated for the mixture of different kinds of log files. Then, distinct sites of various log files are selected for the construction of the acceptable data sets. Session identification, attribute extraction, session labeling and classification were held. Moreover, this approach clustered the meta-alerts into higher level meta-alerts for fusing multistages of attacks and the various types of attacks.
Originality/value
This methodology used incremental clustering techniques and analyzed the probability of existing topologies in SVM classifiers for more deterministic classification. It also enhanced the taxonomy for various domains.
Details
Keywords
Mona Jami Pour, Mahnaz Hosseinzadeh and Maryam Moradi
The Internet of Things (IoT), as one of the new digital technologies, has created wide applications in various industries, and one of the most influential industries of this…
Abstract
Purpose
The Internet of Things (IoT), as one of the new digital technologies, has created wide applications in various industries, and one of the most influential industries of this technology is the transportation industry. By integrating the IoT with the transportation industry, there will be dramatic changes in the industry, and it will provide many entrepreneurial opportunities for entrepreneurs to develop new businesses. Opportunity identification is at the heart of the entrepreneurial process, and entrepreneurs identify innovative goods or services to enter a new market by identifying, evaluating, and exploiting opportunities. Despite the desire of transportation managers to invest in the IoT and the increase in research in this area, limited research has focused on IoT-based entrepreneurial opportunities in the transportation industry. Therefore, the present study aims to identify IoT-based entrepreneurial opportunities in the transportation industry and examine their importance.
Design/methodology/approach
To achieve the research objective, the authors applied a mixed approach. First, adapting the lens of the industry value chain theory, a comprehensive literature review, besides a qualitative approach including semi-structured interviews with experts and thematic analysis, was conducted to identify the entrepreneurial opportunities. The identified opportunities were confirmed in the second stage using a quantitative survey method, including the Student t-test and factor analysis. Finally, the identified opportunities were weighted and ranked using the best worst method (BWM).
Findings
Entrepreneurial opportunities are classified into five main categories, including “smart vehicles”, “business partners/smart transportation supply side”, “supporting services”, “infrastructures”, and “smart transport management and control”. The infrastructures group of opportunities ranked the highest amongst the identified groups.
Originality/value
This study adds to the digital entrepreneurship opportunity recognition literature by addressing opportunities in a smart industry propelled by digital technologies, including developing new products or new applications of the available technologies. Additionally, inspired by the industry value chain theory, this article develops a framework including various digital entrepreneurial opportunity networks which are necessary to add value to any industry and, thus, could be applied by entrepreneurs to recognize opportunities for new intermediaries to enter other digital-based industries. Finally, the present study identifies the IoT-based entrepreneurial opportunities in the smart transportation industry and prioritizes them, providing practical insights regarding the creation of entrepreneurial ecosystems in the field of smart transportation for entrepreneurs and policymakers.
Details
Keywords
Serap Kiriş and Muharrem Karaaslan
The purpose of this study is to design a radio altimeter antenna whose production process is facilitated and can work with multiple-input multiple-output (MIMO) properties to…
Abstract
Purpose
The purpose of this study is to design a radio altimeter antenna whose production process is facilitated and can work with multiple-input multiple-output (MIMO) properties to provide space gain on the aircraft.
Design/methodology/approach
To create an easy-to-produce MIMO, a two-storied structure consisting of a reflector and a top antenna was designed. The dimensions of the reflector were prevented to get smaller to supply easy production. The unit cell nearly with the same dimensions of a lower frequency was protected through the original cell design. The co-planar structure with the use of a via connection was modified and a structure was achieved with no need to via for easy production, too. Finally, the antennas were placed side by side and the distance between them was optimized to achieve a MIMO operation.
Findings
As a result, an easy-to-produce, compact and successful radio altimeter antenna was obtained with high antenna parameters such as 10.14 dBi gain and 10.55 dBi directivity, and the conical pattern along with proper MIMO features, through original reflector surface and top antenna system.
Originality/value
Since radio altimeter antennas require high radiation properties, the microstrip antenna structure is generally used in literature. This paper contributes by presenting the radio altimeter application with antenna-reflective structure participation. The technical solutions were developed during the design, focusing on an easy manufacturing process for both the reflective surface and the upper antenna. Also, the combination of International Telecommunication Union’s recommended features that require high antenna properties was achieved, which is challenging to reach. In addition, by operating the antenna as a successful MIMO, two goals of easy production and space gain on aircraft have been attained at the same time.