Search results

1 – 3 of 3
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 12 June 2017

Vaithiyanathan Dhandapani

Adders play a vital role in almost all digital designs, as all four arithmetic operations can be confined within addition. Hence, area and power optimization of the adders will…

130

Abstract

Purpose

Adders play a vital role in almost all digital designs, as all four arithmetic operations can be confined within addition. Hence, area and power optimization of the adders will result in overall circuit optimization. Being the fastest adder, the carry select adder (CSLA) gains higher importance among the different adder styles. However, it suffers from the drawback of increased power and area. The implementation of CSLA in digital circuits requires lots of study for optimization. Hence, to overcome this problem, various improvements were made to the CSLA structure to reduce area and, consequently, reduce power. Among these, modified CSLAs show a significant improvement, as they utilize a binary excess-1 code (BEC) to replace the add-one circuit.

Design/methodology/approach

This paper presents further enhancement in the modified CSLA by proposing a decision-based CSLA, which activates BEC on demand. This leads to reduced switching activity. The performance of the proposal is done by analyzing and comparing it with different adders. The comparison is done on the basis of three performance parameters: area, speed and power consumption. This is done by implementing the architecture on Xilinx Virtex5 XC5VLX30 in Verilog environment and is synthesized using Cadence® RTL Compiler® using TSMC 180-nm CMOS cell library.

Findings

Optimization of power, area and increasing the speed of operation are the three main areas of research in very-large-scale integration (VLSI) design for portable devices. As adders are the most fundamental units for any VLSI design, optimization at the adder level has a huge impact on the overall circuit. The modified CSLA has a BEC which continuously switches irrespective of the previous carry bit generated. The unwanted switching results in excess power consumption while also introducing additional delay. Hence, the author has proposed a decider circuit to avoid this excess switching activity. This allows switching of the BEC only when a previous carry is generated. The modified CSLA is based on the ripple carry adder, while the decider-based CSLA utilizes a carry look-ahead adder. This makes a decider-based CSLA faster while utilizing less area and power consumption when compared to the modified CSLA.

Originality/value

The efficiency of the proposed decider-based CSLA has been verified using Cadence RTL Compiler using TSMC 180-nm CMOS cell library and has been found to have 17 per cent power and 11.57 per cent area optimization when compared to the modified CSLA, while maintaining operating frequency.

Details

World Journal of Engineering, vol. 14 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Access Restricted. View access options
Article
Publication date: 28 September 2020

Mariammal K., Hajira Banu M., Britto Pari J. and Vaithiyanathan Dhandapani

Very large-scale integration (VLSI) digital signal processing became very popular and is predominantly used in several emerging applications. The optimal design of multirate…

245

Abstract

Purpose

Very large-scale integration (VLSI) digital signal processing became very popular and is predominantly used in several emerging applications. The optimal design of multirate filter with improvement in performance parameters such as less area, high speed and less power is the challenging task in most of the signal processing applications. This study aims to propose several effective multirate filter structures to accomplish sampling rate conversion.

Design/methodology/approach

The multirate filter structures considered in this work are polyphase filter and coefficient symmetry-based finite impulse response filter. The symmetry scheme particularly brings down the complexity to significant extent. To bring improvement in speed, delay registers are inserted at appropriate path with the help of pipelining and retiming scheme.

Findings

In this paper, the three tasks have been considered. First, the polyphase coefficient symmetry and modified polyphase (MP) structure is designed. Second, the pipelining is applied to the polyphase structure and the obtained results are compared with the polyphase structure. In third, retiming is applied to the polyphase structure and the performance comparison is carried out. The structures are realized for various orders, and the comparative analysis is carried out with the filter order N = 12, 30, 42, 8, 11 and 24 and the results are stated. The performance of all the accomplished structures is analyzed using Altera Quartus with the family cyclone II, device EP2C70F672C6. The results show that the multirate filter using pipelining and retiming offers better performance when examining with the conventional structures. Retimed and pipelined MP structure achieves a speed enhancement of about 33.81% when examining with the conventional polyphase (CP) structure with retiming and pipelining for N = 24 and M = 5. Likewise, the 2/3 structure of pipelined coefficient symmetry approach offers area reduction of about 54.76% over 2/3 structure of pipelined polyphase approach for N = 30 with little reduction in power. The fine grain pipelined and retimed MP structure with N = 11 and M = 3 avails critical path delay reduction of about 28.15% when examining with the corresponding fine grain pipelined and retimed CP structure.

Originality/value

The proposed distinct structures offer better alternative to conventional structures because of the symmetric coefficients, performance enhancement using pipelining and retiming based rate conversion structures. The suggested structures can be used for achieving different rates in software radios.

Details

Circuit World, vol. 47 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Access Restricted. View access options
Article
Publication date: 18 August 2022

Britto Pari J., Mariammal K. and Vaithiyanathan D.

Filter design plays an essential role in most communication standards. The essential element of the software-defined radio is a channelizer that comprises several channel filters…

60

Abstract

Purpose

Filter design plays an essential role in most communication standards. The essential element of the software-defined radio is a channelizer that comprises several channel filters. Designing filters with lower complexity, minimized area and enhanced speed is a demanding task in currently prevailing communication standards. This study aims to propose an efficient reconfigurable residue number system (RNS)-based multiply-accumulate (MAC) channel filter for software radio receivers.

Design/methodology/approach

RNS-based pipelined MAC module for the realization of channel finite impulse response (FIR) filter architecture is considered in this work. Further, the use of a single adder and single multiplier for realizing the filter architecture regardless of the number of taps offers effective resource sharing. This design provides significant improvement in speed of operation as well as a reduction in area complexity.

Findings

In this paper, two major tasks have been considered: first, the RNS number conversion is performed in which the integer is converted into several residues. These residues are processed in parallel and are applied to the MAC-FIR filter architecture. Second, the MAC filter architecture involves pipelining, which enhances the speed of operation to a significant extent. Also, the time-sharing-based design incorporates a single partial product-based shift and add multiplier and single adder, which provide a low complex design. The results show that the proposed 16-tap RNS-based pipelined MAC sub-filter achieves significant improvement in speed as well as 89.87% area optimization when examined with the conventional RNS-based FIR filter structure.

Originality/value

The proposed MAC-FIR filter architecture provides good performance in terms of complexity and speed of operation because of the use of the RNS scheme with pipelining and partial product-based shift and adds multiplier and single adder when examining with the conventional designs. The reported architecture can be used in software radios.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 3 of 3
Per page
102050