Search results
1 – 4 of 4R.A. Mhatre, P.A. Mahanwar, V.V. Shertukde and V.A. Bambole
The paper's aim is to synthesise ultraviolet (UV) curable polyurethane acrylate based on polyester polyol and to study change in its mechanical, chemical, optical and weather…
Abstract
Purpose
The paper's aim is to synthesise ultraviolet (UV) curable polyurethane acrylate based on polyester polyol and to study change in its mechanical, chemical, optical and weather resistance properties with varying amount of nanosilica. It also seeks to determine its optimum loading levels for property maximisation.
Design/methodology/approach
New UV curable polyurethane acrylate has been synthesised using polyester polyol, blend of isophorone diisocyanate and toluene diisocyanate and hydroxyl ethyl acrylate. This resin was incorporated with nanosilica (1‐3 per cent) on the basis of total solids. The newly synthesised material was characterised by fourier transform infrared spectroscopy, gel permeation chromatography, X‐ray diffraction and scanning electron microscopy. The mechanical, chemical and optical properties of the coating films were studied and compared.
Findings
The hardness, tensile strength and abrasion resistance show significant enhancement with increasing amount of nanosilica. It is also found that UV cured polyurethane acrylate nanocoating exhibited improved weather resistance. The optimum concentration of nanosilica for better performance is found to be 3 per cent of total solids. The improvement is the result of inherent nature of nanosilica.
Research limitations/implications
Nanosilica used in present context is having 10 nm mean diameter and near about 600 m2/g surface area. Nanosilica having different particle size, surface area and surface modification can be used to improve more specific properties.
Practical implications
Addition of nanosilica particles to polyurethane acrylate coating is a simple and inexpensive method resulting in phenomenal increase in properties.
Originality/value
The new organic‐inorganic hybrid nanocoating with improved weather resistance was synthesised. These coatings could find applications in demanding fields such as automotive topcoats.
Details
Keywords
A.P. Kabra, P. Mahanwar, V. Shertukde and V. Bambole
The purpose of this paper is to formulate two component polyurethane coatings based on acrylic polyol, to study the effects of variable nanosilica loadings in these coatings on…
Abstract
Purpose
The purpose of this paper is to formulate two component polyurethane coatings based on acrylic polyol, to study the effects of variable nanosilica loadings in these coatings on different morphological, optical, mechanical, corrosion resistance and weather resistance properties and to study the intercalation of acrylic polyol molecules into nanosilica crystals by XRD technique.
Design/methodology/approach
Two component polyurethane coatings were synthesised using acrylic polyol and isocyanate HDI. The nanosilica was incorporated in polyurethane formulation at the weight ratios of 1%, 3% and 5% based on total weight of polyol and isocyanate. The performance of nanocoatings was compared for variable loads of nanosilica for different properties such as morphological, optical, mechanical, corrosion resistance, weather resistance and were studied for intercalation of acrylic polyol into nanosilica crystals by XRD technique.
Findings
Improvement in the properties of polyurethane coatings is achieved with the incorporation of nanosilica. The improvement is the result of inherently high properties of inorganic nanosilica. Tensile strength, scratch hardness, abrasion resistance, corrosion and weathering resistance show significant improvement in performance with the incorporation of nanosilica. Properties are found to deteriorate beyond a certain loading of nanosilica; hence it is important to optimise loading level. The optimal range for high performance was found to be in the range of 1% to 3%. The improvement was a result of synergistic behaviour and good interfacial interaction between polyurethane and nanosilica at optimal levels.
Research limitations/implications
The method used for incorporation of nanosilica into polyurethane was direct incorporation method. The other method of incorporation, i.e. in situ addition and its effect on properties can also be studied.
Practical implications
With the addition of optimal loading level of nanosilica to polyurethane coatings, properties can be enhanced up to the mark. The addition is relatively easy and cost effective.
Originality/value
The paper proves the significance of incorporation of nanosilica on original properties of polyurethane coatings and widens the area of applications of two component polyurethane coatings from acrylic polyol by strengthening them in their properties. The coatings can be applicable in high performance topcoats especially for automotive topcoats.
Details
Keywords
Mona Saied, Abeer Reffaee, Shimaa Hamieda, Salwa L. Abd- El- Messieh and Emad S. Shafik
This study aims to get rid of non-degradable polyvinyl chloride (PVC) waste as well as sunflower seed cake (SSC) waste by preparing eco-friendly composites from both in different…
Abstract
Purpose
This study aims to get rid of non-degradable polyvinyl chloride (PVC) waste as well as sunflower seed cake (SSC) waste by preparing eco-friendly composites from both in different proportions to reach good mechanical and insulating properties for antimicrobial and antistatic applications.
Design/methodology/approach
Eco-friendly composite films based on waste polyvinylchloride (WPVC) and SSC of concentrations (0, 10, 20, 30 and 40 Wt.%) were prepared using solution casting method. Further, the effect of sunflower seed oil (SSO) on the biophysical properties of the prepared composites is also investigated. Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscope, mechanical, thermal, dielectric properties were assessed. Besides, the antimicrobial and biodegradation tests were also studied.
Findings
The crystallinity increases by rising SSC concentration as revealed by XRD results. Additionally, the permittivity (ε′) increases by increasing SSC filler and SSO as well. A remarkable increase in dc conductivity was attained after the addition of SSO. While raw WPVC has very low bacterial activity. The composite films are found to be very effective against staphylococcus epidermidis, staphylococcus aureus bacteria and against candida albicans as well. On the other hand, the weight loss of WPVC increases by adding of SSC and SSO, as disclosed by biodegradation studies.
Originality/value
The study aims to reach the optimum method for safe and beneficial disposal of PVC waste as well as SSC for antistatic and antimicrobial application.
Details
Keywords
Pundalik Pandharinath Mali, Nilesh S. Pawar, Narendra S. Sonawane, Vikas Patil and Rahul Patil
The purpose of this work was to develop a new trispiperazido phosphate-based reactive diluent (diphosphate-piperazine hydroxyl acrylate [DPHA]) and used as a flame retardant with…
Abstract
Purpose
The purpose of this work was to develop a new trispiperazido phosphate-based reactive diluent (diphosphate-piperazine hydroxyl acrylate [DPHA]) and used as a flame retardant with an epoxy acrylate (EA) in ultraviolet (UV)-curable wood coating.
Design/methodology/approach
The concentration of reactive diluent was varied from 0% to 20% in the UV-curable formulation with constant photoinitiator concentration. The effect of DPHA concentration on film properties was studied by differential scanning calorimetry and thermogravimetric analysis, gel content, water absorption and limiting oxygen index.
Findings
The results showed that the viscosity of the prepared formulation decreased by increasing reactive diluent (DPHA) concentration which leads to improving the coating efficiency. A high concentration of reactive diluent (DPHA) of the cured films shows good resistance against stain, mechanical and thermal properties, which results in an increased glass transition temperature (Tg) and cross-linking density of the films.
Originality/value
The new trispiperazido phosphate-based reactive diluent was used in wood coating formulation, which resulted in excellent flame-retardant properties with higher cross-linked density with good stain resistance. This material can provide a wide range of application for coating industries to produce a glossy finish.
Details