Search results
1 – 10 of over 2000An orthogonal array technique is used in the present work toinvestigate, numerically, the effects of the swirler and the primary jets onthe characteristics of the recirculation…
Abstract
An orthogonal array technique is used in the present work to investigate, numerically, the effects of the swirler and the primary jets on the characteristics of the recirculation zone of a can‐type gas turbine combustor. The computer code used for this purpose is first validated with the available experimental data. The effects of change in the percentage flow rate through the swirler, the swirl number, the hub diameter of the swirler and the diameter of the primary injection holes (which influences the velocity of the jets) are estimated first. It is found that the flow rate through the swirler and the size of the primary injection hole have much more influence on the characteristics of the recirculation zone than the swirl number and the hub diameter of the swirler. But the earlier studies show that for a given flow rate through the swirler, the swirl number and swirler geometry have considerable influence on the characteristics of the recirculation zone in the absence of primary jets. Therefore it is inferred that there may be a critical point, based on the ratio of flow rate through the swirler to that of primary holes, beyond which the effects of swirl number and the swirler geometry dominate the effect of primary jets in determining the characteristics of the recirculation zone. This critical point is determined by gradually reducing the flow through the primary holes. It is found that, initially, the recirculation ratio (ratio of the mass of fluid recirculated to that sum of the mass flow rate through the swirler and through that of primary hole) reduces because of weakening of the primary jets but after the critical point it increases because of the swirler effect taking over the role of providing the recirculation. It is also observerd that the length of the recirculation zone increases as the strength of the primary jets reduces.
Details
Keywords
M. Ravichandran and V. Ganesan
Computation have been made of the three‐dimensional flow fielddevelopment, chemical reaction and combustion processes in a typicalafterburner system under both isothermal and…
Abstract
Computation have been made of the three‐dimensional flow field development, chemical reaction and combustion processes in a typical afterburner system under both isothermal and reacting flow conditions. The calculations are based upon a numerical solution of the time‐averaged transport equations for mass, momentum, turbulence kinetic energy, dissipation rate, enthalpy and species concentrations using a finite‐volume formulation. The physical models include the k—ε turbulence model, the eddy break‐up model, a two‐step reaction model, a droplet vaporization and combustion model and six‐flux radiation model. The mean flow structures are presented in important longitudinal and cross‐sectional planes which show certain striking similarities and contrasting differences for isothermal and reacting flows. The flame stabilizer flow is shown to be dominated by a complex combination of recirculation and vortex patterns. Combustion alters convergence and mixing flow patterns downstream of the flame stabilizer, thus influencing the selection of the fuel injection system. The predicted reacting flow parameters identify a number of design parameters such as fuel injector location, high degree reaction zone, nozzle opening area and the corresponding fuel flow rate.
Details
Keywords
Naren Shankar R. and Ganesan V.G.
The purpose of this study is to analyse numerically and experimentally the effects of lip thickness (LT) and bypass ratio on co-flowing nozzle under subsonic and correctly…
Abstract
Purpose
The purpose of this study is to analyse numerically and experimentally the effects of lip thickness (LT) and bypass ratio on co-flowing nozzle under subsonic and correctly expanded sonic jet decay at different Mach numbers.
Design/methodology/approach
Co-flowing jets from co-flowing nozzles of different LTs, 0.2, 1 and 1.5 Dp (where Dp is the primary nozzle exit diameter = 10 mm), with an annular gap of 10 mm at main jet exit Mach numbers 0.6 have been studied experimentally and the other cases have been performed numerically. The co-flowing jet with 2 mm LT was used for comparison.
Findings
Co-flowing jet axial pitot pressure decay, axial static pressure decay, axial velocity decay, radial velocity decay and streamline velocity contours were analyzed. The results illustrate that the mixing of the co-flowing jet with profound LT is prevalent to the co-flowing jet with 2 mm LT, at all Mach numbers of the current study. Also, the LT of the co-flowing jet has a strong impact on jet mixing. Co-flowing jets with 10 mm and 15 mm LT with a constant co-flow width of 10 mm experience a considerably advanced mixing than co-flowing jets with 2 mm LT and a co-flow width of 10 mm.
Practical implications
The application of bypassed co-flow jet is in turbofan engine operates efficiently in modern civil aircraft.
Originality/value
All subsonic jets are considered correctly expanded with negligible variation in axial static pressure. However, in the present study, static pressure along the centerline varies sinusoidally up to 9% and 12% above and below atmospheric pressure, respectively, for primary jet exit Mach number 1.0. The sinusoidal variation is less for primary jet exit Mach numbers 0.6 and 0.8 in static pressure decay.
Details
Keywords
The purpose of this manuscript, a state feedback gain depends on the optimal design of fractional order PID controller to time-delay system is established. In established optimal…
Abstract
Purpose
The purpose of this manuscript, a state feedback gain depends on the optimal design of fractional order PID controller to time-delay system is established. In established optimal design known as advanced cuttlefish optimizer and random decision forest that is combined performance of random decision forest algorithm (RDFA) and advanced cuttlefish optimizer (ACFO).
Design/methodology/approach
The proposed ACFO uses the concept of crossover and mutation operator depend on position upgrading to enhance its search behavior, calculational speed as well as convergence profile at basic cuttlefish optimizer.
Findings
Fractional order proportional-integrator-derivative (FOPID) controller, apart from as tuning parameters (kp, ki and kd) it consists of two extra tuning parameters λ and µ. In established technology, the increase of FOPID controller is adjusted to reach needed responses that demonstrated using RDFA theory as well as RDF weight matrices is probable to the help of the ACFO method. The uniqueness of the established method is to decrease the failure of the FOPID controller at greater order time delay method with the help of controller maximize restrictions. The objective of the established method is selected to consider parameters set point as well as achieved parameters of time-delay system.
Originality/value
In the established technique used to evade large order delays as well as reliability restrictions such as small excesses, time resolution, as well as fixed condition defect. These methods is implemented at MATLAB/Simulink platform as well as outcomes compared to various existing methods such as Ziegler-Nichols fit, curve fit, Wang method, regression and invasive weed optimization and linear-quadratic regression method.
Details
Keywords
Naren Shankar R., Ganesan V.G., Dilip Raja N., Sathish Kumar K. and Vijayaraja K.
The effect of increasing lip thickness (LT) and Mach number on subsonic co-flowing Jet (CFJ) decay at subsonic and correctly expanded sonic Mach numbers has been analysed…
Abstract
Purpose
The effect of increasing lip thickness (LT) and Mach number on subsonic co-flowing Jet (CFJ) decay at subsonic and correctly expanded sonic Mach numbers has been analysed experimentally and numerically in this study. This study aims to a critical LT below which mixing enhances and above which mixing inhibits.
Design/methodology/approach
LT is the distance, separating the primary nozzle and the secondary duct, present in the co-flowing nozzle. The CFJ with LT ranging from 2 mm to 150 mm at jet exit Mach numbers of 0.6, 0.8 and 1.0 were studied in detail. The CFJ with 2 mm LT is used for comparison. Centreline total pressure decay, centreline static pressure decay and near field flow behaviour were analysed.
Findings
The result shows that the mixing enhances until a critical limit and a further increase in the LT does not show any variation in the jet mixing. Beyond this critical limit, the secondary jet has a detrimental effect on the primary jet, which deteriorates the process of mixing. The CFJ within the critical limit experiences a significantly higher mixing. The effect of the increase in the Mach number has marginal variation in the total pressure and significant variation in static pressure along the jet axis.
Practical implications
In this study, the velocity ratio (VR) is maintained constant and the bypass ratio (BR) was varied from low value to very high values for subsonic and correctly expanded sonic. Presently, commercial aircraft engine operates under these Mach numbers and low to ultra-high BR. Hence, the present study becomes essential.
Originality/value
This is the first effort to find the critical value of LT for a constant VR for a Mach number range of 0.6 to 1.0, compressible CFJ. The CFJs with constant VR of unity and varying LT, in these Mach number range, have not been studied in the past.
Details
Keywords
Naren Shankar Radha Krishnan, Irish Angelin S., Ganesan V.G. and Sathish Kumar K.
In comparison to a nozzle with a larger/finite separation distance (Thanigaiarasu et al., 2019), a thin-lip nozzle (Srinivasarao et al., 2017) minimizes drag. Coaxial nozzles with…
Abstract
Purpose
In comparison to a nozzle with a larger/finite separation distance (Thanigaiarasu et al., 2019), a thin-lip nozzle (Srinivasarao et al., 2017) minimizes drag. Coaxial nozzles with thin lips are an appropriate tool for studying high subsonic jets because it does not create a dominant re-circulation zone. This study aims to analyze the characteristic of separation distances, between primary and secondary nozzles, within the range of 0.7–3.2 mm which can be considered a thin lip.
Design/methodology/approach
A separation distance of 0.7 (Papamoschou, 2004), 1.7 and 2.65 mm (Lovaraju and Rathakrishnan, 2011) is considered for the present study. The main nozzle exit Mach number is maintained at a subsonic condition of Mach 0.6, and the co-flowing nozzle exit Mach number is varied from 0% (secondary jet stopped/single jet) to 100% (Mach 0.6) in steps of 20% with respect to the main nozzle exit Mach number. A comparison was made between these velocity ratios for all three lip thicknesses in the present study. Design mesh and analysis were done by using Gambit 2.6.4 and Fluent 6.12. Velocity contours and turbulence contours were studied for qualitative analysis.
Findings
When lip thickness increases from 0.7 to 2.65 mm, the potential core length (PCL) of the primary jet decreases marginally. Additionally, the PCL of the primary jet elongates significantly as the velocity ratio increases. The primary shear layer is dominant at 20% co-flow (20 PCF), less dominant at 60% co-flow (60 PCF) and almost disappeared at 100% co-flow (100 PCF). Concurrently, the secondary shear layer almost disappeared in 20 PCF, dominant in 60 PCF and more dominant in 100 PCF. Different zones such as initial merging, intermediate and fully merged zones are quantitatively and qualitatively analyzed.
Practical implications
Co-flow nozzle is used in turbofan engine exhaust. The scaled-down model of a turbofan engine has been analyzed. Core length is directly proportional to the jet noise. The PCL signifies the jet noise reduction in a high-speed jet. For a low-velocity ratio, the potential core is reduced and hence can reduce the jet noise. At the same time, as the velocity ratio increases, the mass flow rate of the coaxial increases. The increase in the mass flow increases the thrust of the engine. The aircraft engine designer should analyze the requirement of the aircraft and choose the optimal velocity ratio coaxial nozzle for the engine exhaust (Papamoschou, 2004).
Originality/value
There have been many research studies carried out previously at various lip thickness such as 0.4 (Georgiadis, 2003), 0.7 (Papamoschou, 2004), 1.5 (Srinivasarao et al., 2014a), 1.7 (Sharma et al., 2008), 2 (Naren, Thanigaiarasu and Rathakrishnan, 2016), 2.65 (Lovaraju and Rathakrishnan, 2011), 3 (Inturiet al., 2022) and 3.2 mm (Perumal et al., 2020). However, there is no proper study to vary the lip thickness in this range from 0.7 to 3.2 mm to understand the flow behavior of a co-flowing jet.
Details
Keywords
Rabia Hassan, Zeeshan Ahmad Arfeen, Mehreen Kausar Azam, Zain ul Abiden Akhtar, Abubakar Siddique and Muhammad Rashid
Material selection, driven by wide and often conflicting objectives, is an important, sometimes difficult problem in material engineering. In this context, multi-criteria…
Abstract
Purpose
Material selection, driven by wide and often conflicting objectives, is an important, sometimes difficult problem in material engineering. In this context, multi-criteria decision-making (MCDM) methodologies are effective. An approach of MCDM is needed to cater to criteria of material assortment simultaneously. More firms are now concerned about increasing their productivity using mathematical tools. To occupy a gap in the previous literature this research recommends an integrated MCDM and mathematical Bi-objective model for the selection of material. In addition, by using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), the inherent ambiguities of decision-makers in paired evaluations are considered in this research. It goes on to construct a mathematical bi-objective model for determining the best item to purchase.
Design/methodology/approach
The entropy perspective is implemented in this paper to evaluate the weight parameters, while the TOPSIS technique is used to determine the best and worst intermediate pipe materials for automotive exhaust system. The intermediate pipes are used to join the components of the exhaust systems. The materials usually used to manufacture intermediate pipe are SUS 436LM, SUS 430, SUS 304, SUS 436L, SUH 409 L, SUS 441 L and SUS 439L. These seven materials are evaluated based on tensile strength (TS), hardness (H), elongation (E), yield strength (YS) and cost (C). A hybrid methodology combining entropy-based criteria weighting, with the TOPSIS for alternative ranking, is pursued to identify the optimal design material for an engineered application in this paper. This study aims to help while filling the information gap in selecting the most suitable material for use in the exhaust intermediate pipes. After that, the authors searched for and considered eight materials and evaluated them on the following five criteria: (1) TS, (2) YS, (3) H, (4) E and (5) C. The first two criteria have been chosen because they can have a lot of influence on the behavior of the exhaust intermediate pipes, on their performance and on the cost. In this structure, the weights of the criteria are calculated objectively through the entropy method in order to have an unbiased assessment. This essentially measures the quantity of information each criterion contribution, indicating the relative importance of these criteria better. Subsequently, the materials were ranked using the TOPSIS method in terms of their relative performance by measuring each material from an ideal solution to determine the best alternative. The results show that SUS 309, SUS 432L and SUS 436 LM are the first three materials that the exhaust intermediate pipe optimal design should consider.
Findings
The material matrix of the decision presented in Table 3 was normalized through Equation 5, as shown in Table 5, and the matrix was multiplied with weighting criteria ß_j. The obtained weighted normalized matrix V_ij is presented in Table 6. However, the ideal, worst and best value was ascertained by employing Equation 7. This study is based on the selection of material for the development of intermediate pipe using MCDM, and it involves four basic stages, i.e. method of translation criteria, screening process, method of ranking and search for methods. The selection was done through the TOPSIS method, and the criteria weight was obtained by the entropy method. The result showed that the top three materials are SUS 309, SUS 432L and SUS 436 LM, respectively. For the future work, it is suggested to select more alternatives and criteria. The comparison can also be done by using different MCDM techniques like and Choice Expressing Reality (ELECTRE), Decision-Making Trial and Evaluation Laboratory (DEMATEL) and Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE).
Originality/value
The results provide important conclusions for material selection in this targeted application, verifying the employment of mutual entropy-TOPSIS methodology for a series of difficult engineering decisions in material engineering concepts that combine superior capacity with better performance as well as cost-efficiency in various engineering design.
Details
Keywords
The purpose of this paper is to consider the effect of the Prevention of Money Laundering Act (PMLA), 2002 on the property rights of third parties, by evaluating whether the…
Abstract
Purpose
The purpose of this paper is to consider the effect of the Prevention of Money Laundering Act (PMLA), 2002 on the property rights of third parties, by evaluating whether the interpretation of the scheme of the PMLA, 2002 results in a deprivation of rights, by virtue of the provision for the provisional attachment of property.[AQ3] In doing so, this paper attempts to consider two sub-categories of third parties that stand affected by §5 of the PMLA, 2002.
Design/methodology/approach
Primarily the authors analyse diverging judgements and case law across various high courts to evaluate the position of law with regards to attachment of property. To reach a precise legal conclusion, the authors consider the composite scheme of the PMLA, 2002 in their analysis.
Findings
It has been concluded that there is a clear lack of judicial cohesion in the interpretation of the PMLA, 2002, and in the absence of a judgement by the Supreme Court of India, enforcement authorities have failed to correctly identify the boundaries of the offence of money laundering, resulting in a dangerous deprivation of rights.
Originality/value
This paper fills a vacuum of detailed scholarship on anti-money laundering provisions in India, while also being contemporaneously relevant, as it considers the effects of the PMLA, 2002 on bona fide economic transactions and secured creditors.
Details
Keywords
Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…
Abstract
Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.
Details
Keywords
The purpose of this paper is to demonstrate the I‐V characteristics of ZnO film on Si substrates with Ag buffer layer by conductive atomic force (C‐AFM).
Abstract
Purpose
The purpose of this paper is to demonstrate the I‐V characteristics of ZnO film on Si substrates with Ag buffer layer by conductive atomic force (C‐AFM).
Design/methodology/approach
An Ag buffer layer and Zn film was first deposited on silicon substrate by RF‐sputtering deposition method from high pure Ag and Zn target, respectively. Then, the deposited film was sintered in air at 500°C for 1 h.
Findings
The structures and morphologies of the prepared films were characterized by X‐ray diffraction (XRD), energy dispersive spectrum (EDS), atomic force microscopy (AFM), and C‐AFM. The results show that the prepared ZnO films with Ag buffer layer have a good crystallinity and surface morphology. Interestingly, the I‐V curve of ZnO film exhibited typical characteristics of semi‐conductive oxide under the conductive Ag buffer layer.
Originality/value
The paper demonstrates, by C‐AFM, that the ZnO/Ag‐buffer/Si exhibits excellent crystal structure, morphology and typical I‐V characteristics.
Details