Search results

1 – 10 of 10
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 1 March 2003

V. Fireteanu, T. Tudorache, A. Geri and G.M. Veca

This paper presents two numerical methods, which will be able to predict the temperature distribution in the thin moving conducting sheet, which is caused by the eddy‐current…

301

Abstract

This paper presents two numerical methods, which will be able to predict the temperature distribution in the thin moving conducting sheet, which is caused by the eddy‐current losses in transverse flux inductive heating devices (TFIH). The first method is based on a finite element calculation, while the second one is based on a circuit approach. The main aim of this paper is the validation of the circuit model by comparison with the more accurate and sophisticate finite element model. In addition, the results of both numerical models have also been compared with those obtained by experimental measurements.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 22 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 7 March 2008

Tiberiu Tudorache and Virgiliu Fireteanu

This paper aims to deal with the 3D finite element analysis of metallic sheets heating in translating motion through the air gap of an inductor of transverse flux type.

225

Abstract

Purpose

This paper aims to deal with the 3D finite element analysis of metallic sheets heating in translating motion through the air gap of an inductor of transverse flux type.

Design/methodology/approach

This study presents two finite element based motion coupling techniques used to analyze the transient temperature field of moving metallic sheets heated by induction.

Findings

The numerical results obtained by the two different magneto‐thermal – translating motion coupling techniques proposed in this paper are in good agreement with each other being validated also by experimental measurements.

Practical implications

The proposed numerical techniques can be used for the design and optimization of transverse flux induction heating systems.

Originality/value

An original solution to improve the transversal thermal profile of the metallic sheet based on the magnetic shielding is proposed and analyzed. The numerical results of the thermal field are validated by experimental measurements.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 1 January 2013

Guillermo Martín‐Segura, Coia Ferrater‐Simón, Joaquim López‐Mestre, Daniel Montesinos‐Miracle and Joan Bergas‐Jané

The aim of this paper is to simulate, test and evaluate an induction heating process considering the converter's performance.

180

Abstract

Purpose

The aim of this paper is to simulate, test and evaluate an induction heating process considering the converter's performance.

Design/methodology/approach

In case of continuous induction hardening processes, the load changes abruptly during the transition to Curie temperature, becoming significant considering the converter's behavior. In this paper, an induction heating system is simulated combining the numerical analysis of the electromagnetic‐thermal and electrical problem, focusing mainly on the converter's performance. The simulations are realized by using commercial FEM software and the voltage and the frequency are manually varied according to the converter's control. The system has also been implemented in an experimental setup and the results obtained have been compared with the simulations.

Findings

The importance of considering the converter's dynamics was observed during the simulations. The simulation results showed a correspondence with the experimental results, validating the simulation procedure and demonstrating that the converter's behavior has to be considered.

Originality/value

A power converter for a real industrial induction heating process where there is a sudden change in the load parameters is simulated and experimentally tested. The importance of considering the variation of frequency and voltage during the simulation of induction heating systems is demonstrated. Some considerations for induction heating modeling regarding converter's performance are given and the importance of converter's dynamics is introduced. In addition, a simple and flexible method of simulating the converter operation with commercial software is presented.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 1 March 2005

Virgiliu Fireteanu, Bernard Paya, Jacques Nuns, Yves Neau, Tiberiu Tudorache and Alexandru Spahiu

Analysis and development of a high efficiency, induction heated chemical reactor, medium frequency supplied (1,000‐2,000 Hz), able to be equipped with efficient cooling circuits.

1367

Abstract

Purpose

Analysis and development of a high efficiency, induction heated chemical reactor, medium frequency supplied (1,000‐2,000 Hz), able to be equipped with efficient cooling circuits.

Design/methodology/approach

The numerical investigations of the technical solutions proposed in this paper are based on 3D finite element models that are experimentally validated.

Findings

Solutions to increase the transparency of the cooling envelope of the reactor tank with respect to magnetic field. The positions of envelope regions characterized by high values of power losses are experimentally confirmed by infrared temperature measurements.

Practical implications

The numerical analysis and the experimental investigations, show the possibility to implement efficient cooling circuits in chemical reactors without affecting the performances of the induction heating process. By designing properly the metallic envelope of the tank the global efficiencies of the chemical reactors increase at around 90 percent with reduced impact on the working environment and with low costs.

Originality

This paper proposes an innovative chemical reactor medium frequency induction heated with efficient cooling circuits and with high global efficiency, higher than the actual induction heated chemical reactors.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 24 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 1 March 2003

Virgiliu Fireteanu and Tiberiu Tudorache

The relative motion between the inductor and the work‐piece to be heated, the magnetic non‐linearity and the dependence of physical properties on temperature are considered in the…

552

Abstract

The relative motion between the inductor and the work‐piece to be heated, the magnetic non‐linearity and the dependence of physical properties on temperature are considered in the numerical simulations of continuous transverse flux induction heating of metallic sheets and scanning type induction heating of billets. Using the translating air‐gap technique, the transient and the steady state electromagnetic and thermal fields are evaluated.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 22 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 7 March 2016

Yilun Li and Shiyou Yang

The temperature drop, especially in the edge of rolled steel in the hot rolling cooling has a catastrophic effect on the steel quality. The purpose of this paper is to study the…

218

Abstract

Purpose

The temperature drop, especially in the edge of rolled steel in the hot rolling cooling has a catastrophic effect on the steel quality. The purpose of this paper is to study the coupled eddy current-temperature field of a C-type edge induction heater to provide references for engineering applications and designs.

Design/methodology/approach

Three-dimensional finite element analysis (FEA) model of a C-type edge induction heater is developed. Especially, a numerical methodology to couple the eddy current and temperature fields is proposed for coupled eddy current and temperature problems involving movement components. FEA software ANSYS is used to solve the coupled eddy current and temperature fields. The heat loss from the eddy current fields is abstracted and processed, and taken as internal heat source in the analysis of the temperature field. The temperature distribution of the rolling steel is obtained.

Findings

The numerical results can predict exactly the temperature rise of the rolled steel by means of the edge induction heating system.

Practical implications

The proposed numerical methodology for coupling eddy current and temperature fields can be applied to engineering coupled eddy current and temperature problems involving movement components. Also, the developed model and method can be used in the analysis and design of the edge induction heating system.

Originality/value

A numerical methodology to couple eddy current and temperature field for solving multi-physics field problems involving movement components is proposed and implemented in available commercial software. A three-dimensional model of the C-type edge induction heat heater is developed. Finite element method is employed to study the coupled eddy current-thermal problem. A method to deal with the movement of the strip steel is proposed. The proposed methodology can be applied to other coupled eddy current-temperature field problem with moving components.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 1 September 2003

Bernard Paya, Virgiliu Fireteanu, Alexandru Spahiu and Christophe Guérin

This paper presents the results of a series of tests made in order to validate the magneto‐thermal module of the new FLUX3D v3.40. The tool was conceived to solve the coupled…

385

Abstract

This paper presents the results of a series of tests made in order to validate the magneto‐thermal module of the new FLUX3D v3.40. The tool was conceived to solve the coupled problems of electromagnetic and thermal phenomena. The solving method of the program considers a thermal‐transient problem during a certain period of time and it solves, at each time step, the thermal and electromagnetic equations (in quasi‐stationary magneto‐harmonic formulation), alternatively. We have modelled the inductive longitudinal welding of steel pipes. The results of 3D simulations are compared with measurements on a laboratory device.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 22 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 1 January 1994

F. Dughiero, S. Lupi and P. Siega

In this paper an analytical method, based on Fourier's series, which allows to determine the eddy currents distribution in travelling wave induction heaters with cylindrical…

62

Abstract

In this paper an analytical method, based on Fourier's series, which allows to determine the eddy currents distribution in travelling wave induction heaters with cylindrical symmetry is described. The method is particularly suitable for parametric analyses of heating systems with magnetic or non‐magnetic, solid, bimetallic or hollow loads, with inductors (with or without external magnetic yoke) of the transverse flux or travelling wave type. Useful results can be obtained also for the heating of “flat” metal loads, by inductors facing one side of the load.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 13 no. 1
Type: Research Article
ISSN: 0332-1649

Access Restricted. View access options
Article
Publication date: 26 September 2018

C.H.H.M. Custers, J.W. Jansen, M.C. van Beurden and E.A. Lomonova

The purpose of this paper is to describe a semi-analytical modeling technique to predict eddy currents in three-dimensional (3D) conducting structures with finite dimensions…

284

Abstract

Purpose

The purpose of this paper is to describe a semi-analytical modeling technique to predict eddy currents in three-dimensional (3D) conducting structures with finite dimensions. Using the developed method, power losses and parasitic forces that result from eddy current distributions can be computed.

Design/methodology/approach

In conducting regions, the Fourier-based solutions are developed to include a spatially dependent conductivity in the expressions of electromagnetic quantities. To validate the method, it is applied to an electromagnetic configuration and the results are compared to finite element results.

Findings

The method shows good agreement with the finite element method for a large range of frequencies. The convergence of the presented model is analyzed.

Research limitations/implications

Because of the Fourier series basis of the solution, the results depend on the considered number of harmonics. When conducting structures are small with respect to the spatial period, the number of harmonics has to be relatively large.

Practical implications

Because of the general form of the solutions, the technique can be applied to a wide range of electromagnetic configurations to predict, e.g. eddy current losses in magnets or wireless energy transfer systems. By adaptation of the conductivity function in conducting regions, eddy current distributions in structures containing holes or slit patterns can be obtained.

Originality/value

With the presented technique, eddy currents in conducting structures of finite dimensions can be modeled. The semi-analytical model is for a relatively low number of harmonics computationally faster than 3D finite element methods. The method has been validated and shown to be computationally accurate.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 1 December 2002

Virgiliu Fireteanu, Bernard Paya, Jacques Nuns and Tiberiu Tudorache

This paper analyses the conditions for which the results of eddy currents computation in thin regions modelled by surface regions are concordant with those obtained using volume…

360

Abstract

This paper analyses the conditions for which the results of eddy currents computation in thin regions modelled by surface regions are concordant with those obtained using volume finite elements. The concepts of geometrically thin or thick region, electromagnetically thin or thick region, 2D or 3D problem, transverse or longitudinal flux problem are used to characterise the limits of the surface model. The computation of eddy currents in sheets heated in transverse flux inductors and of the eddy current losses in metallic casing of an induction furnace highlights the surface finite element applicability.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 21 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 10
Per page
102050