Search results

1 – 1 of 1
Article
Publication date: 8 April 2024

Yimei Chen, Yixin Wang, Baoquan Li and Tohru Kamiya

The purpose of this paper is to propose a new velocity prediction navigation algorithm to develop a conflict-free path for robots in dynamic crowded environments. The algorithm…

Abstract

Purpose

The purpose of this paper is to propose a new velocity prediction navigation algorithm to develop a conflict-free path for robots in dynamic crowded environments. The algorithm BP-prediction and reciprocal velocity obstacle (PRVO) combines the BP neural network for velocity PRVO to accomplish dynamic collision avoidance.

Design/methodology/approach

This presented method exhibits innovation by anticipating ahead velocities using BP neural networks to reconstruct the velocity obstacle region; determining the optimized velocity corresponding to the robot’s scalable radius range from the error generated by the non-holonomic robot tracking the desired trajectory; and considering acceleration constraints, determining the set of multi-step reachable velocities of non-holonomic robot in the space of velocity variations.

Findings

The method is validated using three commonly used metrics of collision rate, travel time and average distance in a comparison between simulation experiments including multiple differential drive robots and physical experiments using the Turtkebot3 robot. The experimental results show that our method outperforms other RVO extension methods on the three metrics.

Originality/value

In this paper, the authors propose navigation algorithms capable of adaptively selecting the optimal speed for a multi-robot system to avoid robot collisions during dynamic crowded interactions.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 1 of 1